Self-AdaptiveDifferentialEvolutionAlgorithmWithZoningEvolutionofControlParameters
andAdaptiveMutationStrategies
QinqinFanandXuefengYan
Abstract—Theperformanceofthedifferentialevolution(DE)algorithmissigni?cantlyaffectedbythechoiceofmutationstrategiesandcontrolparameters.Maintainingthesearchcapa-bilityofvariouscontrolparametercombinationsthroughouttheentireevolutionprocessisalsoakeyissue.Aself-adaptiveDEalgorithmwithzoningevolutionofcontrolparametersandadap-tivemutationstrategiesisproposedinthispaper.Intheproposedalgorithm,themutationstrategiesareautomaticallyadjustedwithpopulationevolution,andthecontrolparametersevolveintheirownzoningtoself-adaptanddiscovernearoptimalval-uesautonomously.Theproposedalgorithmiscomparedwith?vestate-of-the-artDEalgorithmvariantsaccordingtoasetofbenchmarktestfunctions.Furthermore,sevennonparamet-ricstatisticaltestsareimplementedtoanalyzetheexperimentalresults.Theresultsindicatethattheoverallperformanceoftheproposedalgorithmisbetterthanthoseofthe?veexistingimprovedalgorithms.
IndexTerms—Controlparameteradaptation,differentialevolution(DE)algorithm,mutationstrategyadaptation,zoningevolution.
I.INTRODUCTION
IFFERENTIALevolution(DE)algorithmproposedbyStornandPrice[1]isacompetitiveandreliableevo-lutionarycomputingtechniqueforsolvingawidevari-etyofcomplexoptimizationproblems.Theoptimizationperformance[2]–[5]oftheDEalgorithmnotonlydependsonthechoiceofthreecontrolparameters(i.e.,muta-tioncontrolparameterF,crossovercontrolparameterCR,andpopulationsizeNP),butalsoonthechoiceoftrialvectorgenerationstrategies(i.e.,mutationandcrossoverstrategies).Toimprovethealgorithm’sperformance,severalusefulempiricalguidelinesforselectingcontrolparametersettingsandmutationstrategieshavebeenintroducedbymanyresearchersduringthepastdecade.Eibenetal.[6]and
ManuscriptreceivedDecember10,2013;revisedNovember16,2014andJanuary21,2015;acceptedJanuary27,2015.DateofpublicationMarch10,2015;dateofcurrentversionDecember14,2015.Thisworkwassupportedinpartbythe973projectofChinaunderGrant2013CB733600,inpartbytheNationalNaturalScienceFoundationofChinaunderGrant21176073,inpartbytheProgramforNewCenturyExcellentTalentsinUniversityunderGrantNCET-09-0346,andinpartbytheFundamentalResearchFundsfortheCentralUniversities.ThispaperwasrecommendedbyY.Jin.
TheauthorsarewiththeKeyLaboratoryofAdvancedControlandOptimizationforChemicalProcessesofMinistryofEducation,EastChinaUniversityofScienceandTechnology,Shanghai200237,China(e-mail:xfyan@ecust.edu.cn).
Colorversionsofoneormoreofthe?guresinthispaperareavailableonlineathttp://ieeexplore.ieee.org.
DigitalObjectIdenti?er10.1109/TCYB.2015.2399478
D
Brestetal.[7]proposedthreeparametercontroltechniques(i.e.,deterministic,adaptive,andself-adaptive)andanencod-ingtechnique(i.e.,encodingcontrolparametersFandCRintoanindividual),respectively.However,differentoptimizationproblemsorparticularevolutionstagesoftenrequirechosenmutationstrategiesandsuitablecontrolparameters[8]dur-ingtheevolutionprocess;aninappropriatechoiceofmutationstrategiesandcontrolparametersmaydirectlyin?uencethealgorithm’sperformance[9]–[11].Differentcontrolparam-etercombinationsmayalsosigni?cantlyaffectalgorithm’ssearchcapability.Wangetal.[5]andMallipeddietal.[8]employedconstantcombinationsofcontrolparameters(i.e.,FandCRvaluesaredeterminedbeforeactualDEusage)tomaintainthesearchingcapabilityofthecontrolparame-tercombinations;however,theirproposedmethodsmaybeunabletoadaptquicklyincomplexoptimizationenvironments.Onthebasisoftheseconsiderations,obtainingthemostsuitablemutationstrategyandreasonablecombinationsofcontrolparametersatdifferentevolutionphasesisimportanttoimproveDEperformance.Inthispaper,aself-adaptiveDE(SDE)algorithmwithzoningevolutionofcontrolparame-tersandadaptivemutationstrategies(ZEPDE)isproposed.InZEPDE,thenumberofeachmutationstrategycanbegraduallyadjustedviaaroulettewheel,andreal-timeoptimalcontrolparametercombinationscanbeobtainedbyzoningevolution,whichcanmaintainthecontrolparameterdistribution.ZEPDEwascomparedwith?veimprovedDEvariantsaccordingto25CEC2005and28CEC2013testfunctions.
Theremainderofthispaperisorganizedasfollows.SectionIIintroducesthebasicDEalgorithm.SectionIIIreviewstherelatedresearchesonDEalgorithm.SectionIVpresentstheproposedZEPDEalgorithm.SectionVreportstheexperimentalresultsandsensitiveanalysisofZEPDEparameters.Finally,theconclusionissummarizedinSectionVI.Togainbetterunderstanding,interestedreaderscanrefertothesupplementary?le.
II.DEALGORITHM
IntheevolutionprocessofDE,mutation,crossover,andselectionoperatorsareperformed.Thevectorcon-tainingDoptimizedvariablesx1,x2,...,xDisdenoted
GGGbyx.xGi=[xi,1,xi,2,...,xi,D]denotestheithsolution
(orindividual)intheGthgeneration.Thepopulationofthe
GGGthgenerationisdenotedbyXG=[xG1,x2,...,xNP],which
c2015IEEE.Personaluseispermitted,butrepublication/redistributionrequiresIEEEpermission.2168-2267??
Seehttp://www.ieee.org/publications_standards/publications/rights/index.htmlformoreinformation.
220containsNPindividuals.NPgenerallyis?xedduringtheevolutionprocess.Theminimumproblemisdescribedasfollows:
minx
fx??
(x1,x2,...,xj∈xlowj,xhigh
??D)j
,j=1,2,...,D(1)
wherefdenotesthefunctionthatissubjecttooptimization.AD-dimensionalspaceP0isde?nedwithintheregion{(xlowj,xhighj
)j=1,2,...,D}.TheprocedureofexecutingDEisasfollows[9].1)InitializationOperation:Theinitialindividualsx0NParerandomlygeneratedinPi,i=1,2,...,0.MutationF,crossoverCR,andmaximumnumberofgenerationsGmaxaredetermined.ThecurrentgenerationissetasG=0.
2)ForeachindividualxGi,i=1,2,...,NP,performsteps3)–5)toderivethepopulationforthenextgeneration.3)MutationOperation[12]:ForeachxGpopulation,themutantindividualx?Giinthei+1
parent
isgeneratedasfollows:
x?Gi+1=xG??
??rGrG
1+F·x2?xr3(2)wherer1,r2,r3∈{1,2,...,NP}arerandomlychosen
andaredifferentfromtherunningindexi.Fisarealconstantscalingfactorwithin[0,1],whichcontrolsthe
ampli?cationofthedifferentialvariation(xGrGOperation,[9]:ForeachxG2?xr3).
4)CrossoverxˉGi,ai+1trialindividual
isgenerated??asfollows:
xˉGx?Gij+1,Rij
+1
=j≤CRxGj=1,2,...,D(3)ij,otherwiseofwhere[0,1].
Rjisauniformrandomnumberintherange
5)EvaluationOperation,[9]:OffspringxˉG+1
competesone-to-onewithitsparentxGevaluationi
i.Theoperation
isexpressedas
??
xGi+1=xˉGi+1,f??xˉGi+1??≤f(xGi)xGi,otherwise.(4)6)G=G+1.
7)Steps2)–6)arerepeatedaslongasthenumberofgenerationsissmallerthantheallowablemaximumnumberGmax.
Otherusefulstrategies“DE/rand/2”[13]:x?Gi+1areasfollows:
=xG“DE/best/2”[12]:x?Gr1+F·(xGr2?xGGGi+1=xGbest+F·(xGxrr1?G3)+F·(xrr2)+F·(xG4?xrr3?xG5)r4)
“DE/current-to-best/1”[12]:
x?Gi+1=xG??
??i+F·xGbest?xG??i+F·xGr1?xG
??r2“DE/current-to-best/2”[13]:
x?Gi
+1=xG??
??????best+F·xGbest?xGi+F·xGr1?xGr2+xGr3?xG
r4wherexGbestistheindividualvectorwiththebest?tnessvalueinthepopulationatgenerationG.
IEEETRANSACTIONSONCYBERNETICS,VOL.46,NO.1,JANUARY2016
III.LITERATUREREVIEW
AlthoughtheDEalgorithmhasattractedtheattentionof
manyresearchersbecauseofitshighsearchaccuracy,robust-ness,andgoodconvergencespeed,selectingsuitablemutationstrategiesandcontrolparametersatdifferentevolutionstagesisdif?cult,particularlywhentheoptimizationproblemsarecomplexandrequiredifferentsearchcapabilities.
ToimproveDEperformance,DEresearchershavepro-posedseveralempiricalguidelinesforchoosingcontrolparam-etersandmutationstrategiesoverthepastdecade.Forinstance,StornandPrice[14]suggestedthatthesuitablepop-ulationsizeshouldbebetween5Dand10D;Fcanbewithintherangeof[0.4–1],andCRcanbe0.1or0.9.Basedontheexperimentalresultsforthreetestfunctions,Gamperleetal.[15]indicatedthattheappropriatepopula-tionsizeshouldbebetween3Dand8D;F=0.6canbeselected,andCRintherangeof[0.3–0.9]isagoodchoice.Ronkkonenetal.[16]recommendedthattherangeofpopu-lationsizebebetween2Dand4D.F=0.9wouldbeagoodinitialchoice,butasuitableFshouldbeselectedwithintherangeof[0.4–0.95].CRshouldbewithin[0–0.2]forsepa-rabletestfunctionsandwithin[0.9–1]formultimodalandparameterdependenttestfunctions.Zielinskietal.[17]sug-gestedthatthesettingsF≥0.6andCR≥0.6arebene?cialtoalgorithmconvergenceinmostcases.Moreover,severalresearchers[14],[15],[18]–[21]haveproposedandinvesti-gatedvariousmutationstrategiesinconsiderationofthefactthatdifferentoptimizationproblemsrequiredifferentsearchcapabilities.AlthoughtheseguidelinesareusefultoimproveDEperformance,theymaycauseconfusiontoDEuserswhenthepropertiesofoptimizationproblemsarenotsuf?cientlyclearandlacksuf?cientjusti?cationsbecausetheseguidelinesweredesignedbasedonspeci?cexperiments(i.e.,lackofuni-versality)[13].ConstantcontrolparametersettingsandsinglemutationstrategyalsoviolatethenatureofDarwinianevolu-tionandcannotadapttodifferentoptimizationproblemsandevolutionphases.
Manyadaptiveorself-adaptiveDEvariantshavebeenproposedtoavoidmanualtuningofDEcontrolparame-tersandtheuseofaconstantmutationstrategyduringtheevolutionprocess.Forexample,Abbass[22]introducedaself-adaptiveparetodifferentialevolutionalgorithm(SPDE)whereinthecontrolparametersFandCRaregeneratedbyusingaGaussiandistribution.OnthebasisoftheDEalgorithm,Vuetal.[23]recentlyintroducedadirection-guidedevolutionalgorithm(DEAL)whereintwotypesofdirections(i.e.,convergenceandspreadingdirections)areuti-lizedtoguidethepopulationevolution.TheirexperimentalresultsshowthatDEALcanperformbetterthanotherwell-knownalgorithms.LiuandLampinen[11]proposedafuzzyadaptiveDE(FADE)algorithmwhereinappropriatecontrolparametersFandCRcanbegeneratedbyusingfuzzylogiccontrollers.TheirresultsindicatethattheperformanceofFADEinasetofbenchmarksetfunctionsisbetterthanthatofstandardDEalgorithms.ZhangandSanderson[21]pro-posedanewDEalgorithm(JADE),inwhichamutationstrategywithanoptionalexternalarchiveisusedandcon-trolparametersFandCRcanbeautomaticallyadjustedbased
FANANDYAN:SDEALGORITHMWITHZEPDETABLEI
INDIVIDUALWITHCONTROLPARAMETERSANDMUTATIONSTRATEGY
ontheirpreviousrecordofsuccess.Zaharie[24]introducedaparameteradaptationforDE(ADE)inwhichtheadjust-mentofFandCRisbasedonpopulationdiversityandamultipopulationapproachisused.Brestetal.[7]proposedaself-adaptivejDE,inwhicheachindividualhasitsowncontrolparameters(i.e.,FandCR).Thecontrolparameterswereadjustedbytwonewparameters.Omranetal.[25]introducedaSDEwhereinFisadaptiveandCRisgener-atedfromanormaldistributionN(0.5,0.15).Qinetal.[13]alsointroducedaSDEwhereinbothmutationstrategiesandtheirassociatedcontrolparameterscangraduallyself-adaptbylearningfromtheirprevioussuccessfulexperiences.ResultsindicatethatSaDEoutperformsseveralDEvariantsonasetof26testfunctions.Panetal.[26]andMallipeddietal.[8]proposedaDEalgorithmwithaself-adaptivetrialvectorgenerationstrategyandcontrolparameters(SspDE)andanensembleofmutationstrategiesandcontrolparameterswithDE(EPSDE),respectively.InbothDEvariants,mutationstrategiesandcontrolparameterscanautomaticallyadapttopopulationevolution.Ghoshetal.[27]introducedanimprovedDE(FiADE)whereintheadaptationofFandCRisbasedonthe?tnessfunctionvaluesofindividuals.TheirexperimentalresultsshowthatFiADEisacompetitiveoptimizationtoolforsolvingvariousoptimizationproblems.Wangetal.[5]introducedacompositeDE(CoDE),inwhicheachmutationstrategyisrandomlycombinedwitha?xedcontrolparame-tersetting.CoDEemploysthreemutationstrategiesandthreecontrolparametersettings.Gongetal.[28]introducedanenhancedDEinwhichanewstrategyadaptationmechanismisused.Meanwhile,severalresearchershaveappliedanadaptiveorself-adaptivepopulationsizeinDE.Teo[29],[30]proposedthe?rstaself-adaptivepopulationsizeapproach;absoluteandrelativeencodingmethodologiesareemployedinthepopu-lationsizeoftheproposedalgorithm.Tengetal.[31]alsoutilizedtwodifferentencodingmethodologiestoimplementaself-adaptivepopulationsize.TirronenandNeri[32]pro-posedanadaptivepopulationsizewhereinameasurementofthe?tnessdiversitywasused.Zhuetal.[33]introducedanadaptivepopulationtuningschemetoadjustpopulationsize.Variousotherpopulationsizereductionschemeshavebeenproposedby[34],[35].
TheDEalgorithmhasbeensuccessfullyappliedtosolvevariousreal-worldengineeringoptimizationproblemsduetoitseffectiveness,robustness,andsimplicity.Forexample,ZhongandZhang[36]proposedanadaptiveDEalgorithmtosolvesubpixelmapping.Chenetal.[37]introducedamodi?eddifferentialevolutionwhichisappliedtoobtaintheoptimalcontrollerparametersofanadaptiveneuralfuzzynetwork.
221
Fig.1.ZoningtypeofZEPDE.
NeriandMininno[38]proposedamemeticcompactdif-ferentialevolutionforthecontrolofcommercialrobots.Zamudaetal.[39]proposedanapproachbasedontheDEalgorithmforprocedural3-Dmodelsreconstructionofwoodyplants.Salvatoreetal.[40]employedtheDEalgorithmtoopti-mizeanalgorithmofsensorlesscontrolofinductionmotors.Aminetal.[41]employedtheDEalgorithmtoadjusttheairtraf?ccontrollerstaskloadinrealtime.
IV.SELF-ADAPTIVEDIFFERENETIALEVOLUTION
ALGORITHMWITHZEPDEAlthoughmanyself-adaptiveDEalgorithmshavebeenintroduced,howtomaintainthesearchcapabilitiesofcon-trolparametercombinationsofdifferentzoning(i.e.,zoningevolutionofcontrolparameters)duringtheevolutionprocesshasnotbeenconsideredbyotherDEresearchers.Forexam-ple,EPSDEandCoDEemploy?xedcombinationsofcontrolparametersthroughouttheentiresearchprocess.Self-adaptivecontrolparametersaregeneratedinSaDEandJADE,buttheperformanceofcontrolparametercombinationsindifferentzoningisnotconsidered.Basedontheseobservations,wepro-posetheZEPDEalgorithm,inwhichtheappropriatemutationstrategycanbegraduallyadjustedbyaroulettewheel,andsuitablecombinationsofFandCRcanbegeneratedbyzon-ingevolution.Eachindividualhasitsowncontrolparametercombinationandmutationstrategy(TableI).
A.Self-AdaptiveControlParametersBasedonZoningEvolution
ToachievereasonablecombinationsofcontrolparametersduringdifferentevolutionstagesinZEPDE,thetotalregionofcontrolparameters(i.e.,FandCR)isdividedintofoursame-sizeareas(Fig.1).Thezoningevolutionoperationsofcontrolparametersoftheproposedalgorithmcanbedescribedbythefollowingsteps.
1)Countthenumberofcontrolparameterscombina-tionsineachregion.Thenumberofcontrolparam-etercombinationsbeNGinthehthregionisassumedto
,h=1,2,...,H,whereHisthetotalnumberofzoningh
(NZ).
2)Ineachzoning,ifoffspringindividual?tnessisbet-terthanthatofitsparent,thenitscontrolparam-etercombinationisregardedastheelitecontrol
222Fig.2.
Procedureofzoningevolution.
parametercombination(EPC).IfthehthregionhasEPC,assumingthatthenumberofEPCinisNGh,elite,0≤NGh,elite≤NGthehthregion
h,thentheweightedvalueofeachEPCinthehthregioniscomputedasfollows:
??
??????fxˉG+1wGNGh,e?fxGNG
hNGh,e=??NG??????,e??(5)h,elitefe=1
xˉG+1NGh,NG
h,e
?fxGNGh,e
whereNGhthh,e=1,2,...,NGregiondoesnoth,elite.
IfthehaveEPC,theneachcontrolparametercombinationisregardedasEPC.Welet
wGN
Gh,e
=1/NG
h.(6)
3)TheweightedaveragevaluesofFandCRinthehthregionarecomputedasfollows:
NGh,elite
FG
W,h
=
??
wGNG
×G
(7)
NG=1h,e
FNGh,e
h,eNGh,elite
CRGw,h=
??
wGNGNGh,e
×CRGNG
h,e
.(8)
h,e
=14)Thecontrolparametersaregeneratedinthehthregion
asthefollowingway:
FGh,+????
l1=CauchyFGW,h,l=1,2,...,NG
h(9)CRGh,+l1=N??CRG??
σ
w,h,σl=1,2,...,NGh(10)whereCauchyandNaretheCauchyandnormaldis-tributionfunctions,respectively.σ=0.55?0.3×(1?G/Gmax).
ThezoningevolutionofcontrolparametersisshowninFig.2.
IEEETRANSACTIONSONCYBERNETICS,VOL.46,NO.1,JANUARY2016
B.Self-AdaptiveMutationStrategies
TheDE/rand/1mutationstrategyhasgoodexplorationcapa-bilityandiswidelyutilizedinDE.Meanwhile,self-adaptivemutationstrategies(whichcontaingreedymutationstrategies)mayleadtodecreasedpopulationdiversityduringtheearlyevolutionprocess.Toobtaingoodbalancebetweenglobalandlocalsearchcapabilitiesintheproposedalgorithm,theDE/rand/1strategyisusedtooptimizethepopulationduringtheearlystagesoftheevolutionprocess.Subsequently,self-adaptivemutationstrategiesareutilizedtosearchfortheopti-malsolutioninconsiderationofthefactthatdifferentevolutionstagesrequiredifferentsearchcapabilities.OnthebasisofthemutationstrategiesselectedinSaDE[13]andCoDE[5],?vemutationstrategiesareselectedfortheproposedalgorithm.These?vestrategiesareDE/rand/1,DE/rand/2,DE/best/2,DE/current-to-best/1,andDE/current-to-best/2.
C.BoundaryOperationofControlParameters
AnextremelylargevalueofFcanincreasepopulation
diversityandleadtoslowconvergencespeed,whereasanextremelysmallvalueofFmayleadtostagnationorpre-matureconvergence[4].Therefore,therangeofFinthispaperiswithin[0.1–1](similartojDEin[7])duringtheearlyevolutionprocessandwithin[0–1]duringthelaterstagesofevolution.Meanwhile,therangeofCRisfrom[0–1]through-outtheentiresearchprocess.InfeasiblecontrolparametersareresetviatheweightedaveragevaluesofFandCRintheearlystagesofevolutionandregeneratedontheboundaryinthemiddleandlatestagesbecauseCauchyandnormaldistribu-tionfunctionsmayresultinthelossofboundarydistributionofthecontrolparameters.
D.OverallImplementationofZEPDE
Theproposedalgorithmisdescribedasfollows.
1)InitializationOperation:ThevaluesofparameterssuchasthenumberofindividualsinthepopulationNP,max-imumvariationofselectiveprobability(Msp)ineachgeneration,andmaximumgenerationsGmaxaredeter-mined.SetSetp=0.175(i.e.,onlyuseDE/rand/1muta-tionstrategybeforeGs=Setp×Gmaxgenerations),currentgenerationG=0,andBset=0.35(i.e.,abound-aryoperationofcontrolparametersisusedbeforeGb=Bset×Gmaxgenerations,whereastheotherboundaryoperationisemployedafterGb=Bset×Gmaxgener-ations).TheinitialpopulationP01isgenerated,andthenumberofindividualsegyisset(i.e.,NGbelongingtoeachmutationGstrat-str_randsG/1=Nstr_rands/2=Ns
NGstr_best/2=str_sGcurrent-to-best/1=Nstr_scurrentto-best/2=NP/5).
2)PopulationEvolution(MutationOperation):ForeachindividualxGi,i=1,2,...,NP,ifG isgeneratedbyusingthecorre-spondingmutationstrategy,whichisrandomlyselectedfromthemutationstrategypool. FANANDYAN:SDEALGORITHMWITHZEPDEFig.3.FrameworkofZEPDE. Boundaryoperation:Ifx?Ghigh ij+1 thenx?Gj ij+1=xG.Crossoveroperation r 1j ??G+1xˉGx?ij,Rj≤CRij+1 =xGij ,otherwisej=1,2,...,D.Selectionoperation ?? ???? xGi+1= xˉGi+1,fxˉG+1 ≤f??i xG?? i xGi, otherwise. 3)Self-AdaptiveMutationStrategy:IfG=Gs,?vemuta-tionoperations,i.e.,DE/rand/1,DE/current-to-best/2, DE/current-to-best/1,DE/best/2,andDE/rand/2,areran-domlyallocatedforallindividuals.EachindividualhasitsownmutationationhasNGoperation,andeachmutationoper-str_randsG/1=Nstr_randsG/2=Nstr_bests /2=NGstr_current-to-bestsGG≥G/1=Nstr_current-to-bests/2=NP/5individ-uals.Ifs,themaximumobjectivefunctionvalueisobtainedasfollows: f???? max=maxfxˉG????i+1 ,i=1,2,...,NP.(11)Thedifferencebetweentheobjectivefunctionvalueof eachindividualandfmaxiscalculatedinthefollowingway: ??fG+1 ??????i =??fxˉG?? ??i+1?fmax????,i=1,2,...,NP.(12)223 Foreachmutationstrategy,thesumofdifferenceiscomputedas NGstr_name SG+1 =?? str_name ??fG+1 str_name,k,k=1,2,...,NG str_name k=1 (13) wherestr_namegiesandNGdenotesoneofthe?vemutationstrate-denotesthenumberofindividualsforaspecialmutationstr_name strategy. Thesumofdifferenceofthe?vemutationstrategiesiscalculatedasfollows: SG+1=SGrand+1/1+SGrand+1/2+SGcurrent-to-best/1 +1 +SGcurrent-to-best/2+1+SGbest+1 /2. (14) Theselectiveprobability(sp)ofeachmutationstrategy iscomputedinthefollowing: spGstr_name+1=SGstr_name+1/S G+1 .(15) Thespofeachmutationstrategycanbeformulatedas follows: ???spG+Msp,ifspGstr_name+1 ?spGstr_name>MspspGstr_name +1=?str_name ??spG?str_name?Msp,ifspGstr_name+1?spGstr_name, otherwise.(16) Thecumulativeprobability(cp)ofeachmutationstrat-egyiscomputedasfollows: cpGrand+1/1=spGrand+1 /1 (17)cpGrand+1/2=spGrand+1/1+spGrand+1/2 (18)cpGcurrent-to-best/1+1=spGrand+1/1+spGrand+1 /2 +spGcurrent-to-best/1 +1 (19)cpGcurrent-to-best/2+1=spGrand+1/1+spGrand+1/2+spGcurrent-to-best/1 +1 +spGcurrent-to-best/2 +1 (20)cpGbest+1/2=spGrand+1/1+spGrand+1/2+spGcurrent-to-best/1 +1 +spGcurrent-to-best/2+1+spGbest+1/2. (21) Basedonthecpofeachmutationberofeachmutationstrategy(i.e.,NGstrategy,+1theG+1 num-NGstr_+1current-to-best/1,NGstr_+1str_rand/1,Ncurrent-to-best/2,andNGwheel. str_best+str_rand1/2,/2)isgeneratedbyaroulette4)Self-AdaptiveControlParameters:Thedetaileddescrip-tionsofthezoningevolutionoperationsofcontrolparametersarepresentedinSectionIV-A. IfG<0.35×Gmax,FiG+1>1,orFasiG+1<0.1,themutationcontrolparameterisupdatedfollows: FiG+1=N(μF,0.2) whereμF=(FGW,A+FGW,BIfG<0.35×Gmax,CRG++1FG>W,G1C+ForCRW,DG)/+1 4. <0,thecrossovercontrolparametericanbeupdatedi asfollows: CRGi +1 =N(μCR,0.2)224IEEETRANSACTIONSONCYBERNETICS,VOL.46,NO.1,JANUARY2016 TABLEII RESULTSOFWILCOXONTESTON30-DIMENSIONAL CEC2005FUNCTIONSTABLEIII RANKINGOBTAINEDBYFRIEDMAN’STESTON30-DIMENSIONAL CEC2005FUNCTIONS GGG whereμCR=(CRGW,A+CRW,B+CRW,C+CRW,D)/4.IfG≥0.35×Gmax,themutationandcrossovercontrolparameterscanbeupdatedasfollows: TABLEIV p-VALUESOBTAINEDBYBONFERRONI–DUNN’S,HOLM’S,ANDHOCHBERG’SPROCEDURESFORTHECOMPAREDDEALGORITHMS ON30-DIMENSIONALCEC2005FUNCTIONS ?? FiG+1 =?? +1CRGi 1,ifFiG+1>1, ???????????? ??N0,0.15×1?(G/Gmax)2??,ifFG+1<0. i (22) +1 1,ifCRG>1,i???????????? ??N0,0.15×1?(G/Gmax)2??,ifCRG+1<0. i = (23) 5)G=G+1. 6)Repeatsteps2)–5)aslongasthenumberofgenerationsisequaltotheallowablemaximumnumberGmax.TheframeworkofZEPDEisshowninFig.3. V.EXPERIMENTALSTUDYONZEPDE Todemonstratetheoverallperformanceoftheproposedalgorithm,25CEC2005[42]and28CEC2013[43]bench-markfunctionswereusedintheexperiments.TheoptimizationperformanceofZEPDEwasthencomparedwiththatof?vestate-of-the-artDEvariants,i.e.,jDE[7],SaDE[13],JADE[21],EPSDE[8],andCoDE[5].AlltheseDEvari-antswereprogrammedinMATLAB(MATLABR2012a)andrunonaWindows7operatingsystem(bit).Themaximumnumberoffunctionevaluations(FEs)issetto300000for30-dimensionaltestfunctionsand500000for50-dimensionaltestfunctionsinallalgorithms.Thenumberofindependentrunsissetto30andtheaccuracylevelofoptimizationresultsissettobe1E-8(i.e.,theoptimizationresultlessthan1E-8aszero).ThepopulationsizesettingsoftheseDEvariantsaredifferent,100forZEPDE,andthepopulationsizesettingsoftheotheralgorithmsaresimilartothoseintheirorigi-nalpapers,namely,100forjDEandJADE;50forEPSDEandSaDE;30forCoDE.Toeffectivelyanalyzetheexper-imentalresultsobtainedbythecomparedalgorithms,sevennonparametricstatisticaltestswithasigni?cancelevelof0.05areutilizedintheexperiments.ThesetestsareWilcoxon’sranksumtest[44],Kruskal–Wallistestwithmultiplecomparisons[45],Friedman’stest[46],Bonferroni–Dunn’stest[47],Holm’sprocedure,Iman–Davenporttest,andHochberg’sprocedure[48].FortheWilcoxon’sranksumtest,the“+,”“?,”and“≈”marksindicatethatZEPDEperformssigni?cantlybetterthan,worsethan,andalmostsimilartothecomparedalgorithms,respectively.FortheKruskal–Wallistestwithmultiplecomparisons,“K+”denotesthattheresultisthebestamongallcomparedresults,and“K?”or“K≈”indicate thattheresultissigni?cantlyworsethanoralmostthesameasthebestresult,respectively. A.ComparisonWithFiveImprovedDEon30-DimensionalProblems(CEC2005) Inthisexperiment,ZEPDEiscomparedwith?vefamousDEvariants(i.e.,jDE,SaDE,JADE,EPSDE,andCoDE)accordingto2530-dimensionalCEC2005benchmarkfunc-tionstoevaluateitsoverallperformance.Theexperimen-talresultsaregiveninsupplementary(TableA1)duetopageslimit. WilcoxontestisemployedtoanalyzetheoptimizationresultsshowninTableII.ItcanbeseenfromTableIIthatZEPDEperformsbetterthanjDE,SaDE,JADE,EPSDE,andCoDEon16,15,9,15,and7testfunctions,respectively.jDE,JADE,EPSDE,andCoDEperformsigni?cantlybetterthanZEPDEonone,?ve,?ve,andfourtestfunctions,respectively.TheperformanceofSaDEcannotbesigni?cantlybetterthanthatofZEPDEonanytestfunctions. Friedman’stestisalsoemployedtoevaluatetheperfor-mancesofallthecomparedalgorithms.TherankingsobtainedbyFriedman’stestareshowninTableIII.TableIIIindi-catesthattheoverallperformanceofZEPDEperformsbetterthanthoseoftheothercomparedDEalgorithms.Todetectthedifferencesamongthecomparedalgorithms,p-valuesareobtainedbyBonferroni–Dunn’s,Holm’s,andHochberg’spro-ceduresshowninTableIV.TableIVindicatesthattheaverageperformanceofZEPDEissigni?cantlybetterthanthoseofjDE,EPSDE,andSaDEandissimilartothoseofJADEandCoDE.However,theresultsobtainedbyWilcoxontestandFriedman’stest,itisobservedthattheoverallperformanceofZEPDEisbetterthanthoseofJADEandCoDE. B.ComparisonWithFiveImprovedDEon50-DimensionalProblems(CEC2005) Inthisexperiment,2550-dimensionalCEC2005bench-markfunctionsareusedtotesttheperformancesofall FANANDYAN:SDEALGORITHMWITHZEPDETABLEV OPTIMIZATIONRESULTSFOR2550-DIMENSIONAL CEC2005TESTFUNCTIONSTABLEVI RANKINGOBTAINEDBYFRIEDMAN’STESTON50-DIMENSIONAL CEC2005FUNCTIONS TABLEVII p-VALUESOBTAINEDBYBONFERRONI–DUNN’S,HOLM’S,ANDHOCHBERG’SPROCEDURESFORTHECOMPAREDDEALGORITHMS ON50-DIMENSIONALCEC2005FUNCTIONS comparedalgorithms.Theexperimentalresultsaregiveninsupplementary(TableA2)duetopageslimit. TheWilcoxontestandFriedman’stestareemployedtodemonstratethedifferencesbetweenZEPDEandtheothercomparedalgorithms.TableVindicatesthatZEPDEsignif-icantlyoutperformsjDE,SaDE,JADE,EPSDE,andCoDEon16,20,11,18,and30testfunctions,respectively.TableVIshowsthattheoverallperformanceoftheproposedalgorithmisthebestamongthesecomparedalgorithms. Bonferroni–Dunn’s,Holm’s,andHochberg’sproceduresareemployedtodetecttheglobaldifferencesamongthedifferentDEvariants.TableVIIshowsthattheaverageper-formanceofZEPDEissigni?cantlybetterthanthoseofjDE,EPSDE,andSaDEandissimilartothoseofJADEandCoDE.However,itcanbeobservedfromthestatisticalanalysisresultsthattheaverageperformanceoftheproposedalgorithmisthebestamongthecomparedalgorithmson2550-dimensionaltestfunctions. C.ComparisonWithFiveImprovedDEon30-DimensionalProblems(CEC2013) Inthisexperiment,2830-dimensionalCEC2013benchmarkfunctionsareusedtotesttheperformancesofallcomparedDEvariants.Theexperimentalresultsaregiveninsupplementary(TableA3)duetopageslimit. 225 TABLEVIII RESULTSOFWILCOXONTESTON30-DIMENSIONAL CEC2013FUNCTIONS TABLEIX RANKINGOBTAINEDBYFRIEDMAN’STESTON30-DIMENSIONAL CEC2013FUNCTIONS TABLEX p-VALUESOBTAINEDBYBONFERRONI–DUNN’S,HOLM’S,ANDHOCHBERG’SPROCEDURESFORTHECOMPAREDDEALGORITHMS ON30-DIMENSIONALCEC2013FUNCTIONS TheWilcoxontestandFriedman’stestareemployedtodemonstratethedifferencesbetweenZEPDEandthe?veimprovedDEvariants.TheresultsofstatisticalanalysisareshowninTablesVIIIandIX.TableVIIIshowsthatZEPDEcansigni?cantlyoutperformsjDE,SaDE,JADE,EPSDE,andCoDEon16,19,10,17,and11testfunctions,respectively.Meanwhile,TableIXshowsthattheoverallperformanceoftheproposedalgorithmisthebestamongthesesixDEvariants.Bonferroni–Dunn’s,Holm’s,andHochberg’sproceduresarealsoemployedtodetecttheglobaldifferencesamongthedifferentDEvariants.TableXindicatesthattheaver-ageperformanceofZEPDEissigni?cantlybetterthanthoseofEPSDEandSaDE.AlthoughtheoverallperformanceofZEPDEisnotsigni?cantlybetterthanthoseofjDE,JADE,andCoDE,itcanbeseenfromtheresultsoftheWilcoxontestandFriedman’stestthattheaverageperfor-manceofZEPDEisbetterthanthoseofcomparedDEvariants. D.ComparisonWithFiveImprovedDEon50-DimensionalProblems(CEC2013) Inthissection,2850-dimensionalCEC2013testfunctionsareemployedtotesttheperformancesofallcomparedDEalgorithms.Theexperimentalresultsaregiveninsupplemen-tary(TableA4)duetopageslimit. FromthestatisticalanalysisresultsoftheWilcoxontestpre-sentedinTableXI,itcanbeseenfromTableXIthatZEPDE 226TABLEXI RESULTSOFWILCOXONTESTON50-DIMENSIONAL CEC2013FUNCTIONSTABLEXII RANKINGOBTAINEDBYFRIEDMAN’STESTON50-DIMENSIONAL CEC2013FUNCTIONS TABLEXIII p-VALUESOBTAINEDBYBONFERRONI–DUNN’S,HOLM’S,ANDHOCHBERG’SPROCEDURESFORTHECOMPAREDDEALGORITHMS ON30-DIMENSIONALCEC2013FUNCTIONS signi?cantlyperformsbetterthanjDE,SaDE,JADE,EPSDE,andCoDEon16,19,10,19,and12testfunctions.However,theperformanceofZEPDEissigni?cantlyworsethanthoseofjDE,SaDE,JADE,EPSDE,andCoDEonsix,one,seven,three,andsixtestfunctions. TheresultsofFriedman’stestareshowninTableXII,itcanbeseenfromTableXIIthattheaverageperformanceofZEPDEisthebestamongthesecomparedDEalgorithms.Furthermore,thep-valuesobtainedbyBonferroni–Dunn’s,Holm’s,andHochberg’sproceduresshowninTableXIII.TableXIIIindicatesthattheoverallperformanceofZEPDEissigni?cantlybetterthanthoseofjDE,SaDE,andEPSDEon2850-dimensionalCEC2013testfunctions.Overall,theaver-ageperformanceofZEPDEisthebestamongallcomparedalgorithms. Theabovefourexperimentalcomparisonsindicatethatfor2530-dimensionaland50-dimensionalCEC2005testfunc-tions,theoverallperformanceofZEPDEissigni?cantlybetterthanthoseofjDE,SaDE,andEPSDEandisbetterthanthoseofJADEandCoDE.However,theexploitationcapabilityofJADEisbetterthanthatofZEPDEbecauseJADEusesagreedymutationstrategy.Theoverallperfor-mance(i.e.,explorationandexploitationcapacities)ofZEPDEisbetterthanthatofCoDE.For2830-dimensionaland50-dimensionalCEC2013testfunctions,exploitationcapac-ityofalgorithmmaybeimportantbecausetheshiftedglobaloptimumofalltestfunctionsarerandomlydistributedin[?80,80]D(searchrangeis[?100,100]D).Theexperimental IEEETRANSACTIONSONCYBERNETICS,VOL.46,NO.1,JANUARY2016 TABLEXIV RESULTSOFTHEFRIEDMANANDIMAN–DAVENPORTTEST WITHDIFFERENTNP TABLEXV RANKINGOBTAINEDBYFRIEDMAN’STESTUNDERDIFFERENTNP TABLEXVI RESULTSOFKRUSKAL–WALLISTESTUNDERDIFFERENTNP TABLEXVII RESULTSOFTHEFRIEDMANANDIMAN–DAVENPORTTESTWITH DIFFERENTSETP resultsshowninSectionsV-CandV-Dindicatethattheover-allperformanceofZEPDEissigni?cantlybetterthanthoseofjDE,SaDE,andEPSDE.TheresultsalsoshowthattheexploitationcapabilityofZEPDEisnotsigni?cantlyworsethanthatofJADEandisbetterthanthatofCoDEonmostofthetestfunctions.Overall,theaverageperformanceofZEPDEisbetterthanthoseofthe?vecomparedDEvariants,especiallywhenthetestproblemshavehighdimensions.E.AnalysisofParameterSettings Inthissection,2530-dimensionalCEC2005testfunctionsareutilizedtoassesstherobustnessoftheproposedalgo-rithmandthreenonparametricstatisticaltests(i.e.,Friedman’stest[46],Iman–Davenport’stest[48],andKruskal–Wallistestwithmultiplecomparisons)areemployedtoanalyzethesensitivityofpopulationsize,Setp,Mspofeachmutationstrat-egyineachgeneration,Bset,sigmacombination,andNZ.ThemaximumnumberofFEsissettobe300000andallobtainedresultsarebasedon30independentrunsforeachcomparedDEvariantinallexperiments. 1)ImpactofPopulationSize:Inthisexperiment,theimpactofpopulationsizeisinvestigatedduetothefactthatappro-priatepopulationsizecanachievegoodbalancebetweenexplorationandexploitationcapabilitiesduringtheentireevo-lutionprocess.SomeoftheparametersettingsarethesameasinSectionV-AexceptforNP,whichissettobe50,75,100,125,and150inthisexperiment.Themeanandstandarddeviationvalueshavebeenprovidedinthesupplementaryattachment(TableA5)duetospacelimitation. Friedman’s[46]andIman–Davenport’stests[48]areemployedtotestwhethertheperformanceofZEPDEissigni?cantlyaffectedbydifferentpopulationsizesettings.Additionally,theFriedman’stest[46]andKruskal–Wallistest FANANDYAN:SDEALGORITHMWITHZEPDE227 TABLEXVIII RANKINGOBTAINEDBYFRIEDMAN’STESTUNDERDIFFERENTSETP TABLEXIX RESULTSOFKRUSKAL–WALLISTESTUNDERDIFFERENTSETP withmultiplecomparisonsareusedtodeterminethesuitablepopulationsizesettingfortheproposedalgorithm. TableXIVshowsthattheperformanceofZEPDEisnotextremelysensitivetodifferentNP.TablesXVandXVIindi-catethatNP=100isthemostappropriateparametersettingfortheproposedalgorithm. 2)ImpactofSetp:ToinvestigatetheimpactofSetp,whichvariesfrom0to0.4withastepof0.05inthisexperiment.Themeanandstandarddeviationvalueshavebeengiveninthesupplementaryattachment(TableA6)duetospacelimitation.Friedman’s[46]andIman–Davenport’stests[48]areemployedtotestwhethertheperformanceofZEPDEissigni?cantlyaffectedbydifferentsettingsofSetp.Friedman’stest[46]andKruskal–Wallistestwithmultiplecomparisonsareusedto?ndthesuitableparametersettingforthepro-posedalgorithm.TheotherparametersettingsofZEPDEarethesameasinSectionV-A. TheresultsobtainedbyFriedman’s[46]andIman–Davenport’stests[48]arereportedinTablesXVIIandXVIII.TableXVIIindicatesthattheperformanceofZEPDEissig-ni?cantlyinsensitivetodifferentSetp.Meanwhile,itcanbeseenfromTableXVIIIthattheperformanceofZEPDEisidealwhenSetp=0.2.However,TableXIXshowsthattheperfor-manceofZEPDEissimilarwhenSetpiswithin[0.1–0.2].Basedontheresultsobtainedbytheabovestatisticalanalysis,Setp=0.175,whichisamedianvaluebetween0.15and0.2,issuitablefortheproposedalgorithm. 3)ImpactofMsp:Inthisexperiment,theparame-tersettingsoftheproposedalgorithmarethesameasthoseusedinSectionV-A,exceptforMsp,whichvariesfrom0.01to0.09withastepequalto0.01.Themeanandstandarddeviationvalueshavebeengiveninthesup-plementaryattachment(TableA7)duetospacelimitation.Friedman’stest[46]andIman–Davenport’stest[48]areusedtodemonstratewhethertheperformanceofZEPDEissigni?-cantlysensitivetodifferentMsp.Additionally,theFriedman’stest[46]andKruskal–WallistestwithmultiplecomparisonsareemployedtoidentifythemostsuitableMspinZEPDE.TableXXrevealsnosigni?cantperformancediffer-encesunderdifferentMspintheproposedalgorithm.TablesXXIandXXIIindicatethatMsp=0.01isasuitablechoice. 4)ImpactofBset:Inthisexperiment,todemonstratetheeffectofBset,whichvariesfrom0to1inastepof0.1.TheotherparametersettingsofZEPDEarethe TABLEXX RESULTSOFTHEFRIEDMANANDIMAN–DAVENPORTTESTWITH DIFFERENTMSP sameasinSectionV-A.Themeanandstandarddeviationvalueshavebeengiveninthesupplementaryattachment(TableA8)duetospacelimitation.Friedman’stest[46]andIman–Davenport’stest[48]areusedtodemonstratewhethertheperformanceofZEPDEissigni?cantlydifferentunderdifferentBset.TableXXIIIshowsthattheperformanceofZEPDEissigni?cantlysensitivetodifferentBset.Friedman’stest[46]andKruskal–WallistestwithmultiplecomparisonsareemployedtoidentifythesuitableBsetinZEPDE.FromTablesXXIVandXXV,itcanbeseenthatBset=0.35(themedianvalueof0.3and0.4)maybeanappropriatechoiceintheproposedalgorithm. 5)ImpactofSigmaCombinations:Inthisexperiment,thein?uenceofthecombinationsofσ1,σ2onZEPDEperfor-manceisinvestigated.TheproposedalgorithmemploysthesameparametersettingsasthoseusedinSectionV-A,exceptforσ1,σ2,whichvariesfrom0to0.8inastepof0.05.Themeanandstandarddeviationvalueshavebeengiveninthesupplementaryattachment(TableA9)duetospacelimita-tion.Friedman’stest[46]andIman–Davenport’stest[48]areusedtodemonstratewhethertheperformanceofZEPDEdif-ferssigni?cantlyindifferentsigmacombinations.TableXXVIindicatesthattheperformanceofZEPDEisnotsigni?-cantlyin?uencedbydifferentsigmacombinations.Friedman’stest[46]andKruskal–Wallistestwithmultiplecomparisonsarealsoemployedtoanalyzethesuitablesigmacombina-tionforZEPDEalgorithm.FromTableXXVII,itcanbeseenthatthecombination(0.5,0.5)providesthebestperformance;however,TableXXVIIIshowsthattheoverallperformanceofcombination(0.35,0.35)isalsoexcellent.Therefore,incon-siderationofthestatisticalanalysisresults(i.e.,Friedman’sandKruskal–Wallistests),thesigmaofZEPDEcouldbeselectedwithintherangeof[0.25,0.55]. 6)ImpactoftheNZ:ChangeinNZmayin?uencetheper-formanceofZEPDEbecausedifferentzoningsmayresultindifferentcombinationsofcontrolparameters.ToinvestigatetheeffectofNZ,NZissettobe1,2,4(Fig.1),6,and9.ThezoningimplementationsareshowninFig.4.Intheexperiment,theproposedalgorithmemploysthesameparametersettings 228IEEETRANSACTIONSONCYBERNETICS,VOL.46,NO.1,JANUARY2016 TABLEXXI RANKINGOBTAINEDBYFRIEDMAN’STESTUNDERDIFFERENTMSP TABLEXXII RESULTSOFKRUSKAL–WALLISTESTUNDERDIFFERENTMSP TABLEXXIII RESULTSOFTHEFRIEDMANANDIMAN–DAVENPORTTESTWITHDIFFERENTBSET TABLEXXIV RANKINGOBTAINEDBYFRIEDMAN’STESTUNDERDIFFERENTBSET TABLEXXV RESULTSOFKRUSKAL–WALLISTESTUNDERDIFFERENTBSET TABLEXXVI RESULTSOFTHEFRIEDMANANDIMAN–DAVENPORTTESTWITHDIFFERENTSIGMACOMBINATIONS TABLEXXVII RANKINGOBTAINEDBYFRIEDMAN’STESTUNDERDIFFERENTSIGMACOMBINATIONS TABLEXXVIII RESULTSOFKRUSKAL–WALLISTESTUNDERDIFFERENTSIGMACOMBINATIONS asthoseusedinSectionV-A,expectforNZ.NZ(a)–(f)denotesixZEPDEvariantsthatusethezoningtypes[Fig.4(a)–(f)].Moreover,1730-dimensionalCEC2005test(i.e.,F1–F17)functionsareused.Themeanandstandarddeviationval-ueshavebeengiveninthesupplementaryattachment(TableA10)duetospacelimitation.Friedman’stest[46]andIman–Davenport’stest[48]areusedtodemonstratewhethertheperformanceofZEPDEissigni?cantlyin?uencedbydif-ferentNZvalues.TableXXIXindicatesthattheperformanceofZEPDEissigni?cantlyaffectedbydifferentNZvaluesandcanbeimprovedbyincreasingNZ.Moreover,fromtheresultsobtainedbytheFriedman’stest[46]andKruskal–WallistestwithmultiplecomparisonsshowninTablesXXXandXXXI.TableXXXshowsthatNZeprovidesthebestperformance.TableXXXIindicatesthatZEPDEisnotsigni?cantlyworse TABLEXXIX RESULTSOFTHEFRIEDMANANDIMAN–DAVENPORTTESTWITH DIFFERENTNZ TABLEXXX RANKINGOBTAINEDBYFRIEDMAN’STESTUNDERDIFFERENTNZ thanotherZEPDEvariantsonanytestfunctions.Therefore,toachievebalancebetweenalgorithmperformanceandruntime,NZ=4isselectedfortheproposedalgorithm. FANANDYAN:SDEALGORITHMWITHZEPDE229 Fig.4.ZoningtypesofcontrolparametersforNZsis1(a),2(bandc),6(dande),and9(f). TABLEXXXI RESULTSOFKRUSKAL–WALLISTESTUNDERDIFFERENTNZ TABLEXXXII RESULTSOFTHEFRIEDMANANDIMANIMAN–DAVENPORTTESTSWITH DIFFERENTZEPDEVARIANTS Fig.5. EvolutioncurvesofthemutationstrategiesofZEPDEforF4. TABLEXXXIII RANKINGOBTAINEDBYFRIEDMAN’STESTUNDERDIFFERENTZEPDE VARIANTS TABLEXXXIV RESULTSOFKRUSKAL–WALLISTESTUNDERDIFFERENTZEPDE VARIANTS Fig.6. EvolutioncurvesofthemutationstrategiesofZEPDEforF8. TABLEXXXV RESULTSOFKRUSKAL–WALLISTESTUNDERDIFFERENTZEPDE VARIANTSONTHREECEC2005FUNCTIONS F.Self-adaptivemutationstrategyofZEPDE Todemonstratetheeffectoftheself-adaptivemutationstrategiesofZEPDE,?veZEPDEvariants(i.e.,ZEPDE1,ZEPDE2,ZEPDE3,ZEPDE4,andZEPDE5usingonlyDE/rand/1,DE/rand/2,DE/best/2,DE/current-to-best/1,orDE/current-to-best/2mutationstrategy)withasinglemutationstrategyareemployedtosolve1730-dimensional Fig.7.EvolutioncurvesofthemutationstrategiesofZEPDEforF9. CEC2005testfunctions(i.e.,F1–F17).TheparametersettingsofthesevariantsarethesameasZEPDEinSectionV-A.Themeanandstandarddeviationvalueshavebeengiveninthesupplementaryattachment(TableA11)duetospacelimitation. 230IEEETRANSACTIONSONCYBERNETICS,VOL.46,NO.1,JANUARY2016 Fig.8.EvolutioncurvesoftheweightedaveragevaluesofFandCRinfourregions.(a)EvolutioncurveoftheweightedaveragevaluesofFandCRinregionA.(b)EvolutioncurveoftheweightedaveragevaluesofFandCRinregionB.(c)EvolutioncurveoftheweightedaveragevaluesofFandCRinregionC.(d)EvolutioncurveoftheweightedaveragevaluesofFandCRinregionD. Friedman’stest[46]andIman–Davenport’stest[48]areemployedtotestwhethertheperformanceofZEPDEissig-ni?cantlyaffectedbydifferentmutationstrategies.ItcanbeseenfromTableXXXIIthattheperformanceoftheproposedalgorithmissigni?cantlyin?uencedbythechoiceofmuta-tionstrategy.Meanwhile,fromtheresultsofstatisticalanalysisobtainedbyFriedman’stest[46]andKruskal–WallistestwithmultiplecomparisonsshowninTablesXXXIIIandXXXIV,itcanbeseenthattheperformanceofZEPDEisbetterthanthoseofZEPDEvariantswithasinglemutationstrategy.Inaddition,tofurtherdemonstratetheeffectivenessoftheself-adaptivemutationstrategiesoftheproposedalgorithm,threetestfunctions(i.e.,F4,F8,andF9selectedfromCEC2005)areusedtotesttheadaptationofmutationstrategies,andthreetypicalevolutioncurvesofmutationstrategiesofZEPDEareshowninFigs.5–7.AsshowninFigs.5–7andTableXXXV,itcanbeobservedthattheevolutionofthemutationstrategiesofZEPDEconformstotheresultspresentedinTableXXXV.G.Self-AdaptiveControlParametersofZEPDE Inthisexperiment,aCEC2005testfunction(i.e.,F3)isemployedtoanalyzetheself-adaptivepropertiesofcontrolparameters.someoftheparametersettingsofZEPDEarethesameasinSectionV-A.Theevolutioncurvesofthe G,CRG,FG,weightedaverageofFandCR(i.e.,FWW,BW,A,A GGGGCRW,B,FW,C,FW,D,andCRW,D)ineachregionareshowninFig.8.Fig.8(a)indicatesthattheweightedaveragevalue Fig.9.Curvesofthenumberofsigmacombinationsineachregion.(a)CurveofthenumberofsigmacombinationsinregionA.(b)CurveofthenumberofsigmacombinationsinregionB.(c)Curveofthenumberofsigmacom-binationsinregionC.(d)CurveofthenumberofsigmacombinationsinregionD. ofFgraduallydecreasesduringtheentireevolutionprocess,andtheweightedaveragevalueofCRgraduallyincreaseswhengenerationislessthan1000.Fig.8(b)showsthattheweightedaveragevalueofFgraduallyincreasesthroughouttheentireevolutionprocess,andtheweightedaveragevalueofCRgraduallyincreaseswhengenerationislessthan1000.Fig.8(c)indicatesthattheweightedaveragevalueofFgrad-uallyincreasesduringtheevolutionprocess,andtheweightedaveragevalueofCRgraduallydecreases.Fig.8(d)showsthat FANANDYAN:SDEALGORITHMWITHZEPDEtheweightedaveragevalueofFgraduallydecreasesthrough-outtheentireevolutionprocessandtheweightedaveragevalueofCR?uctuatesintheevolutionprocess.Overall,itisobservedthatcontrolparametercombinationsofeachzoninggraduallyplayadifferentrolethroughouttheentireevolu-tionprocess.Therefore,ZEPDEcanwellbalancebetweentheexploitationandexplorationcapabilities.H.NumberofControlParameterCombinationsinEachZoning Toshowthechangesinthenumberofcontrolparametercombinationsineachzoningduringtheevolutionprocess,one30-dimensionalCEC2005testfunction(i.e.,F3)isused.Fig.9showsthatthenumberofcontrolparametercombi-nationscanbeself-adaptivelyadjustedwiththepopulationevolutionineachzoning. VI.CONCLUSION Aself-adaptivedifferentialevolutionalgorithmwithZEPDEisproposedinthispaper.TheperformanceofZEPDEiscomparedwiththatof?vefamousDEvariantson2530-dimensionaland50-dimensionalCEC2005testfunctionsand2830-dimensionaland50-dimensionalCEC2013testfunctions.TheexperimentalresultsshowthattheoverallperformanceofZEPDEisbetterthanthoseoftheothercomparedalgorithms,especiallywhenthetestfunctionhashighdimensions.SeveralnonparametricstatisticaltestsarealsoemployedtoevaluatetheperformancesofallcomparedDEalgorithmsandanalyzethereasonabilityofkeyparame-terchoiceofZEPDE.Severalself-adaptivepropertiesofthemutationstrategiesandcontrolparametersoftheproposedalgorithmandthevariationsinthenumberofcontrolparam-etercombinationsineachzoningarediscussedinthispaper.Fromtheexperimentalresults,itisobservedthatthemutationstrategiesandcontrolparametersofZEPDEcanautomati-callyadaptduringtheevolutionprocess,andtheperformanceofZEPDEissigni?cantlyaffectedbytheNZs.Therefore,ZEPDEcanquicklyadapttocomplexandunknownoptimiza-tionenvironmentsandcanmaintainthesearchcapabilitiesofcontrolparametercombinationsofdifferentzoningsduringtheentireevolutionprocess. REFERENCES [1]R.StornandK.Price,“Differentialevolution—Asimpleandef?-cientadaptiveschemeforglobaloptimizationovercontinuousspaces,”InternationalComputerScienceInstitute,Berkeley,CA,USA,Tech.Rep.TR-95-012,1995. [2]J.LiuandJ.Lampinen,“Onsettingthecontrolparameterofthedif-ferentialevolutionmethod,”inProc.8thInt.SoftComput.MENDEL,Brno,CzechRepublic,2002,pp.11–18. [3]S.DasandP.N.Suganthan,“Differentialevolution:Asurveyofthe state-of-the-art,”IEEETrans.Evol.Comput.,vol.15,no.1,pp.4–31,Feb.2011. [4]F.NeriandV.Tirronen,“Recentadvancesindifferentialevolution: Asurveyandexperimentalanalysis,”Artif.Intell.Rev.,vol.33,nos.1–2,pp.61–106,2010. [5]Y.Wang,Z.Cai,andQ.Zhang,“Differentialevolutionwithcomposite trialvectorgenerationstrategiesandcontrolparameters,”IEEETrans.Evol.Comput.,vol.15,no.1,pp.55–66,Feb.2011. 231 [6]A.E.Eiben,R.Hinterding,andZ.Michalewicz,“Parametercontrol inevolutionaryalgorithms,”IEEETrans.Evol.Comput.,vol.3,no.2,pp.124–141,Jul.1999. [7]J.Brest,V.Zumer,andM.S.Maucec,“Self-adaptivedifferen-tialevolutionalgorithminconstrainedreal-parameteroptimization,”inProc.IEEECongr.Evol.Comput.,Vancouver,BC,Canada,2006,pp.215–222. [8]R.Mallipeddi,P.Suganthan,andQ.Pan,“Differentialevolutionalgo-rithmwithensembleofparametersandmutationstrategies,”Appl.SoftComput.,vol.11,no.2,pp.1679–1696,2011. [9]K.V.Price,R.M.Storn,andJ.A.Lampinen,Differential Evolution—APracticalApproachtoGlobalOptimization.Berlin,Germany:Springer,2005. [10]J.LampinenandI.Zelinka,“Onstagnationofthedifferentialevolution algorithm,”inProc.6thInt.MendelConf.SoftComput.,Brno,CzechRepublic,2002,pp.76–83. [11]J.LiuandJ.Lampinen,“Afuzzyadaptivedifferentialevolution algorithm,”SoftComput.,vol.9,no.6,pp.448–462,2005. [12]R.Storn,“Ontheusageofdifferentialevolutionforfunction optimization,”inProc.BiennialConf.NorthAmer.FuzzyInf.Process.Soc.(NAFIPS),Berkeley,CA,USA,1996,pp.519–523. [13]A.Qin,V.Huang,andP.Suganthan,“Differentialevolutionalgorithm withstrategyadaptationforglobalnumericaloptimization,”IEEETrans.Evol.Comput.,vol.13,no.2,pp.398–417,Apr.2009. [14]R.StornandK.Price,“Differentialevolution—Asimpleandef?-cientheuristicforglobaloptimizationovercontinuousspaces,”J.Glob.Optim.,vol.11,no.4,pp.341–359,1997. [15]R.G?mperle,S.D.Müller,andP.Koumoutsakos,“Aparameterstudy fordifferentialevolution,”Adv.Intell.Syst.FuzzySyst.Evol.Comput.,vol.10,pp.293–298,Aug.2002. [16]J.Ronkkonen,S.Kukkonen,andK.V.Price,“Real-parameteroptimiza-tionwithdifferentialevolution,”inProc.IEEECongr.Evol.Comput.,Edinburgh,Scotland,2005,pp.506–513. [17]K.Zielinski,P.Weitkemper,andR.Laur,“Parameterstudyfordiffer-entialevolutionusingapowerallocationproblemincludinginterferencecancellation,”inProc.IEEECongr.Evol.Comput.,Vancouver,BC,Canada,2006,pp.1857–18. [18]E.Mezura-Montes,J.Velázquez-Reyes,andC.A.CoelloCoello, “Acomparativestudyofdifferentialevolutionvariantsforglobaloptimization,”inProc.Genet.Evol.Comput.Conf.(GECCO),Seattle,WA,USA,2006,pp.485–492. [19]A.W.IorioandX.Li,“Solvingrotatedmultiobjectiveoptimizationprob-lemsusingdifferentialevolution,”inAI2004:AdvancesinArti?cialIntelligence.Berlin,Germany:Springer,2005,pp.861–872. [20]S.Das,A.Abraham,andU.K.Chakraborty,“Differentialevolution usinganeighborhood-basedmutationoperator,”IEEETrans.Evol.Comput.,vol.13,no.3,pp.526–553,Jun.2009. [21]J.ZhangandA.C.Sanderson,“JADE:Adaptivedifferentialevolution withoptionalexternalarchive,”IEEETrans.Evol.Comput.,vol.13,no.5,pp.945–958,Oct.2009. [22]H.A.Abbass,“Theself-adaptiveparetodifferentialevolution algorithm,”inProc.IEEECongr.Evol.Comput.,Honolulu,HI,USA,2002,pp.831–836. [23]C.C.Vu,L.T.Bui,andH.A.Abbass,“DEAL:Adirection-guided evolutionaryalgorithm,”inSimulatedEvolutionandLearning.Berlin,Germany:Springer,2012,pp.148–157. [24]D.Zaharie,“Parameteradaptationindifferentialevolutionbycontrol-lingthepopulationdiversity,”inProc.Int.WorkshopSymb.NumericAlgorithmsSci.Comput.,Timisoara,Romania,2002,pp.385–397.[25]M.G.Omran,A.Salman,andA.P.Engelbrecht,“Self-adaptivedif-ferentialevolution,”inComputationalIntelligenceandSecurity.Berlin,Germany:Springer,2005,pp.192–199. [26]R.Mallipeddi,P.N.Suganthan,andQ.-K.Pan,“Differentialevolu-tionalgorithmwithensembleofparametersandmutationstrategies,”Appl.SoftComput.,vol.11,no.2,pp.1679–1696,2011. [27]A.Ghosh,S.Das,andA.Chowdhury,“Animproveddifferentialevolu-tionalgorithmwith?tness-basedadaptationofthecontrolparameters,”Inf.Sci.,vol.181,no.18,pp.3749–3765,2011. [28]W.Gong,Z.Cai,andC.X.Ling,“Enhanceddifferentialevolutionwith adaptivestrategiesfornumericaloptimization,”IEEETrans.Syst.,Man,Cybern.B,Cybern.,vol.41,no.2,pp.397–413,Apr.2011. [29]J.Teo,“Differentialevolutionwithself-adaptivepopulations,” inKnowledge-BasedIntelligentInformationandEngineeringSystems.Berlin,Germany:Springer,2005,pp.1284–1290. [30]J.Teo,“Exploringdynamicself-adaptivepopulationsindifferential evolution,”SoftComput.,vol.10,no.8,pp.673–686,2006. 232IEEETRANSACTIONSONCYBERNETICS,VOL.46,NO.1,JANUARY2016 [31]N.S.Teng,J.Teo,andM.H.A.Hijazi,“Self-adaptivepopulationsiz-ingforatune-freedifferentialevolution,”SoftComput.,vol.13,no.7,pp.709–724,2009. [32]V.TirronenandF.Neri,“Differentialevolutionwith?tnessdiversity self-adaptation,”inNature-InspiredAlgorithmsforOptimisation.Berlin,Germany:Springer,2009,pp.199–234. [33]W.Zhu,Y.Tang,andJ.-A.Fang,“Adaptivepopulationtuningscheme fordifferentialevolution,”Inf.Sci.,vol.223,pp.1–191,Feb.2012.[34]J.BrestandM.S.Mauˇcec,“Populationsizereductionforthedifferential evolutionalgorithm,”Appl.Intell.,vol.29,no.3,pp.228–247,2008.[35]A.ZamudaandJ.Brest,“Populationreductiondifferentialevolution withmultiplemutationstrategiesinrealworldindustrychallenges,”inSwarmandEvolutionaryComputation.Berlin,Germany:Springer,[44]F.Wilcoxon,“Individualcomparisonsbyrankingmethods,” Biometr.Bull.,vol.1,no.6,pp.80–83,1945. [45]W.H.KruskalandW.A.Wallis,“Useofranksinone-criterionvariance analysis,”J.Amer.Stat.Assoc.,vol.47,no.260,pp.583–621,1952.[46]M.Friedman,“Theuseofrankstoavoidtheassumptionofnormal-ityimplicitintheanalysisofvariance,”J.Amer.Stat.Assoc.,vol.32,no.200,pp.675–701,1937. [47]O.J.Dunn,“Multiplecomparisonsamongmeans,”J.Amer.Stat.Assoc., vol.56,no.293,pp.52–,1961. [48]S.García,D.Molina,M.Lozano,andF.Herrera,“Astudyonthe useofnon-parametrictestsforanalyzingtheevolutionaryalgorithms’behaviour:AcasestudyontheCEC’2005specialsessiononrealparameteroptimization,”J.Heuristics,vol.15,no.6,pp.617–4,2009. 2012,pp.1–161. [36]Y.ZhongandL.Zhang,“Remotesensingimagesubpixelmappingbased onadaptivedifferentialevolution,”IEEETrans.Syst.,Man,Cybern.B,Cybern.,vol.42,no.5,pp.1306–1329,Oct.2012. [37]C.-H.Chen,C.-J.Lin,andC.-T.Lin,“Nonlinearsystemcontrol usingadaptiveneuralfuzzynetworksbasedonamodi?eddifferentialevolution,”IEEETrans.Syst.,Man,Cybern.C,Appl.Rev.,vol.39,no.4,pp.459–473,Jul.2009. [38]F.NeriandE.Mininno,“Memeticcompactdifferentialevolutionfor Cartesianrobotcontrol,”IEEEComput.Intell.Mag.,vol.5,no.2,pp.–65,May2010. [39]A.Zamuda,J.Brest,andB.Bo?kovi′c,“Differentialevolution forparameterizedproceduralwoodyplantmodelsreconstruction,”Appl.SoftComput.,vol.11,no.8,pp.4904–4912,2011. [40]N.Salvatore,A.Caponio,andF.Neri,“Optimizationofdelayed-state Kalman-?lter-basedalgorithmviadifferentialevolutionforsensorlesscontrolofinductionmotors,”IEEETrans.Ind.Electron.,vol.57,no.1,pp.385–394,Jan.2010. [41]R.Amin,J.Tang,M.Ellejmi,S.Kirby,andH.A.Abbass,“Trading-off simulation?delityandoptimizationaccuracyinair-traf?cexperimentsusingdifferentialevolution,”inProc.IEEECongr.Evol.Comput.,Beijing,China,2014,pp.475–482. [42]P.N.Suganthan,N.Hansen,andJ.J.Liang,“Problemde?nitionsand evaluationcriteriafortheCEC2005specialsessiononreal-parameteroptimization,”Dept.Comput.Sci.,KanpurGenet.AlgorithmsLab.,IndianInst.Technol.,Kanpur,India,KanGALRep.2005005,2005.[43]J.Liang,B.Qu,andP.Suganthan,“Problemde?nitionsandevaluation criteriafortheCEC2013specialsessiononreal-parameteroptimiza-tion,”Dept.Econ.,NanyangTechnol.Univ.,Singapore,Tech.Rep.201212,2013. QinqinFanreceivedtheB.S.degreefromWuhanInstituteofTechnology,Wuhan,China,in2007,andtheM.S.degreefromEastChinaUniversityofScienceandTechnology,Shanghai,China,in2011,whereheiscurrentlypursuingthePh.D.degreefromtheDepartmentofAutomation. Hiscurrentresearchinterestsincludedifferentialevolutionalgorithm,particleswarmoptimization,constrainedoptimization,multiobjectiveoptimiza-tion,andtheirreal-worldapplications. XuefengYanreceivedthePh.D.degreefromZhejiangUniversity,Hangzhou,China. HeiscurrentlyaProfessorwithEastChinaUniversityofScienceandTechnology,Shanghai,China.Hiscurrentresearchinterestsincludecomplexchemicalprocessmodeling,opti-mizingandcontrolling,processmonitoring,faultdiagnosis,andintelligentinformationprocessing. 因篇幅問題不能全部顯示,請點(diǎn)此查看更多更全內(nèi)容
Copyright ? 2019- 91gzw.com 版權(quán)所有 湘ICP備2023023988號-2
違法及侵權(quán)請聯(lián)系:TEL:199 1889 7713 E-MAIL:2724546146@qq.com
本站由北京市萬商天勤律師事務(wù)所王興未律師提供法律服務(wù)