陽凌云
(株洲師范高等??茖W(xué)校 數(shù)學(xué)與計(jì)算機(jī)科學(xué)系, 湖南 株洲412007)
摘 要:本文從文[1]中的一個(gè)定理出發(fā),對(duì)其參指數(shù)及其變元作適當(dāng)?shù)淖儞Q,將加權(quán)冪平均不等式進(jìn)行了拓廣與深化,使對(duì)此問題的研究更具深刻性. 關(guān)鍵詞:冪平均不等式;拓廣;深化
中圖分類號(hào): 文獻(xiàn)標(biāo)碼:A 文章編號(hào):?
Extending and Deepening of Discrete Weighted Power mean Inequality
YANG Ling-yun
(Department of Mathematics & Computer Science, Zhuzhou Teachers College, Zhuzhou, Hunan 412007,China.)
Abstract: On the basis of the theorem from paper [1], this paper has made a appropriate transformation of parametric and substitution of Variable elements. It broadens and deepens the weighted Power mean inequality, so that the research on them can be of greater depth.
Key words: Power mean inequality; broaden; deepen.
1 前言
離散型加權(quán)冪平均不等式(又稱Schl?milch不等式)[2]的一般形式是: 若m>n時(shí),則
??ab???ai?nii?ab??≤??ii???ai??1nm?? m,n?R ??1m當(dāng)且僅當(dāng)b1?b2???bn時(shí),上式取到“=”.
本文旨在將上述不等式中的“權(quán)”改造為“冪權(quán)”,以拓廣其應(yīng)用范圍. 文[1] 對(duì)離散型H?lder不等式進(jìn)行了推廣,并給出了如下結(jié)論(記“
?i?1n”為“
?”):
引理 設(shè)xi>0,yi>0,當(dāng) 1≤則有
收稿日期: 2005-09-21
11111
?< 或 p<0,q<0 或 p<0,?≥1時(shí), pqppq
作者簡介: 陽凌云(1947-),男,湖南湘潭人,株洲師專教授,主要從事數(shù)學(xué)教學(xué)與函數(shù)論及數(shù)學(xué)教育理論研究.
?xyii≥n?11?1???p?q???????x????y?ii1pp1qq (1)
當(dāng)0<
111<+≤1時(shí),則有 ppq
?xyii≤n?11?1???p?q???????x????y? (2)
i1ppi1qq若
11+=1,當(dāng)且僅當(dāng)xip?kyiq(k>0)時(shí),(1)、(2)式均取“=”, pq11+≠1,當(dāng)且僅當(dāng)x1?x2???xn, y1?y2???yn時(shí),(1)、(2)式均取“=”. pq若
現(xiàn)在對(duì)(1)、(2)式中的參指數(shù)p與q作巧妙的代換,同時(shí)對(duì)其變元xi與yi作適當(dāng)?shù)淖冃危纯蓪㈦x散型加權(quán)冪平均不等式進(jìn)行拓廣與深化,得到更為深刻的結(jié)果.
2拓廣與深化
定理(加權(quán)冪平均不等式的推廣)設(shè)ai>0,bi>0,
當(dāng) ????0,?<? 或 ????0,?<? 時(shí)(其中 ?+?≠0),則有
??abi ???a1??i?1??i1????????????abi≤ ???a1??i?1??i1??????????. (3)
當(dāng)且僅當(dāng) b1?b2???bn時(shí),(3)式取到“=”.
?1?????????1????????1???1?????????證明 設(shè)引理中的?,?, xi?ai,yi?ai????bi,
q???p???此時(shí)
11????=1. 注意 ?1,????0 ? ????0,?<?. pq???當(dāng)
???11111
<1時(shí)(?+?≠0),則有 1=?< 或 p<0,?=1. ???pqppq
于是根據(jù)引理中的(1)式可得
?1?????????1?????????a???i?ai???bi??????????1???????????≥??ai???????????????????????????????1???????????ai??bi?????????????????????????,
整理得
?a1??i?bi???≥
??a????1??1????i???a1??i?bi??????????.
又當(dāng) ???>0時(shí),兩邊同時(shí)
1次方可得 ?????abi≤???a1??i?1??i??abi???a1??i?1??i???????1??????????1??? . (3)
因?yàn)?p>11+=1,則由引理中的(1)式取“=”的條件可知:當(dāng)且僅當(dāng) pq??ai??1????????????????????=k?ai???1????????????bi???????????? (k>0)
即
b1?b2???bn時(shí),(3)式取到“=”.
????1,????0?????0,?<?. ???注意
當(dāng)
???111>1時(shí)(?+?≠0),則有 0<<+=1. ???ppq又當(dāng)???<0時(shí),再根據(jù)引理中的(2)式同理可證(3)式成立(只須注意???<0時(shí),不等式兩邊同時(shí)
1次方后不等號(hào)反向). ???若令(3)式中的??0,此時(shí)就得到離散型加權(quán)冪平均不等式一般形式. 即 若m>n時(shí),則有
??ab???ai?nii?ab??≤??ii???ai??1nm?? m,n?R ??1m當(dāng)且僅當(dāng)b1?b2???bn時(shí),上式取到“=”.
故(3)式是加權(quán)冪平均不等式的一般形式的拓廣與深化.
參考文獻(xiàn):
[1] 陽凌云.兩個(gè)分式型不等式的拓廣與深化[J],株洲工學(xué)院學(xué)報(bào),2004(2). [2] 匡繼昌.常用不等式[M],長沙:湖南師大出版社(第二版),1992.
因篇幅問題不能全部顯示,請點(diǎn)此查看更多更全內(nèi)容
Copyright ? 2019- 91gzw.com 版權(quán)所有 湘ICP備2023023988號(hào)-2
違法及侵權(quán)請聯(lián)系:TEL:199 1889 7713 E-MAIL:2724546146@qq.com
本站由北京市萬商天勤律師事務(wù)所王興未律師提供法律服務(wù)