成熟丰满熟妇高潮XXXXX,人妻无码AV中文系列久久兔费 ,国产精品一国产精品,国精品午夜福利视频不卡麻豆

您好,歡迎來到九壹網(wǎng)。
搜索
您的當(dāng)前位置:首頁(yè)高中數(shù)列題型_解題方法及綜合總結(jié)

高中數(shù)列題型_解題方法及綜合總結(jié)

來源:九壹網(wǎng)
?1.設(shè)數(shù)列{an}的前n項(xiàng)和Sn,且Sn=2-[1/2^(n-1)],{bn}為等差數(shù)列,且a1=b1,a2(b2-b1)=a1, (1)求數(shù)列{an}和{bn}的通項(xiàng)公式; (2)設(shè)cn=bn/an,求數(shù)列{cn}的前n項(xiàng)和Tn.

1、(1)a(n)=S(n)-S(n-1)=2-[1/2^(n-1)]-2+[1/2^(n-2)]=1/2^(n-1),且a(1)=1,a(2)=1/2; b(1)=a(1)=1,(1/2)[b(2)-1]=1,則b(2)=3 由于{b(n)}是等差數(shù)列,則b(n)=2n-1

(2)c(n)=(2n-1)×2^(n-1),以下用錯(cuò)位相減法求前n項(xiàng)和:

①T(n)=1×2^0+3×2^1+5×2^2+7×2^3+…+(2n-3) ×2^(n-2)+(2n-1) ×2^(n-1) ②2T(n)=1×2^1+3×2^2+5×2^3+…+(2n-3) ×2^(n-1)+(2n-1) ×2^n 由②-①得:

T(n)=-1×2^0+[(-2) ×2^1+(-2) ×2^2+…+(-2) ×2^(n-1)]+(2n-1)2^n =(2n-1)×2^n-1-[2^2+2^3+…+2^n]

=(2n-1) ×2^n-1-[1+2^1+2^2+2^3+…+2^n]+1+2^1 =(2n-1) ×2^n+2-2^(n+1)-1 =(n-1) ×2^(n+1)-2^n+1

2.在數(shù)列{An}中,A1=1,A2=2,且A(n+1)=(1+q)*An-qA(n-1)(n≥2,q≠0) (1)設(shè)Bn=A(n+1)-An(n屬于正整數(shù)集),證明{Bn}是等比數(shù)列; (2)求數(shù)列{An}的通項(xiàng)公式;

(3)若A3是A6與A9的等差中項(xiàng),求q的值,并證明:對(duì)任意的n屬于正整數(shù)集,An是A(n+3)與A(n+6)的等差中項(xiàng)。

2、(1)由a(n+1)=(1+q)a(n)-qa(n-1)(n≥2,q≠0)得 a(n+1)-a(n)=q[a(n)-a(n-1)]

則b(n)=qb(n-1),其中b(1)=a(2)-a(1)=1,且n≥2,q≠0 故{b(n)}為等比數(shù)列,其通項(xiàng)為b(n)=q^(n-1)。

(2)由(1)知:a(n+1)-a(n)=b(n)=q^(n-1),其中a(2)=2,a(1)=1 所以a(n+1)=q^(n-1)+a(n)=q^(n-1)+q^(n-2)+a(n-1)=…=q^(n-1)+…+1+a(1) =q^(n-1)+…+1+1=(1-q^n)/(1-q)+1(當(dāng)q≠1)或n+1(當(dāng)q=1)

所以{a(n)}的通項(xiàng)為a(n)=[1-q^(n-1)]/(1-q)(當(dāng)q≠1)或a(n)=n(當(dāng)q=1)

(3)當(dāng)q=1時(shí),a(n)=n顯然滿足A3是A6與A9的等差中項(xiàng)的條件,故q=1符合題意; 當(dāng)q≠1,2a(3)=a(6)+a(9),

則2(1-q^2)/(1-q)=(1-q^5)/(1-q)+(1-q^8)/(1-q)

即-2=-q^3-q^6,解得q^3=-2或1(與q=1情況重復(fù),舍去), 則q=-(三次根號(hào)2);

證明:此時(shí),q^3=-2,對(duì)于任意n∈N, 2a(n)=2[1-q^(n-1)]/(1-q)

a(n+3)+a(n+6)=[1-q^(n+2)]/(1-q)+[1-q^(n+5)]/(1-q) 則[a(n+3)+a(n+6)]-2a(n)

1

= [1-q^(n+2)]/(1-q)+[1-q^(n+5)]/(1-q)-2[1-q^(n-1)]/(1-q) =[1/(1-q)][1-q^(n+2)+1-q^(n+5)-2+2q^(n-1)] =[q^(n-1)/(1-q)][-q^3-q^6+2] =[q^(n-1)/(1-q)][2-4+2]=0 所以[a(n+3)+a(n+6)]=2a(n)

即a(n)是a(n+3)和a(n+6)的等差中項(xiàng)。

3.若{An}是等比數(shù)列,且Sn=3^n+r ,則r=_____. 4.Sn=12-22+32-42+...+[(-1)^(n-1)]*n2 化簡(jiǎn)求和

3、通項(xiàng)公式為a(n)=S(n)-S(n-1)=3^n+r-3^(n-1)-r=2×3^(n-1) 則S(n)=2[1-3^(n)]/(1-3)=3^n-1,所以r=-1 4、S(n)=1^2-2^2+3^2-4^2+…+[(-1)^(n-1)]×n^2 則當(dāng)n=2k為偶數(shù),則 -S(n)=-S(2k)

=2^2-1^2+4^2-3^2+…+(2k)^2-(2k-1)^2

=(2-1)(2+1)+(4-3)(4+3)+…+[2k-(2k-1)][2k+(2k-1)] =3+7+…+(4k-1)(共k項(xiàng)) =k(3+4k-1)/2=k(2k+1) =n(n+1)/2

所以,n為偶數(shù)時(shí),S(n)=-n(n+1)/2 當(dāng)n=2k+1為奇數(shù),同理則有 S(n)=S(2k+1)

=1+(3-2)(3+2)+(5-4)(5+4)+…+[(2k+1)-(2k)][(2k+1)+(2k)] =1+5+9+…+(4k+1)(共k+1項(xiàng)) =(k+1)(1+4k+1)/2 =n(n+1)/2

所以,S(n)=±n(n+1)/2(n為偶數(shù)時(shí)取負(fù)號(hào),n為奇數(shù)時(shí)取正號(hào))。

5.已知數(shù)列{An}滿足A1=1,A(n-1)/An=[A(n-1)+1]/(1-An)(n屬于正整數(shù)集,n>1) (1)求證:數(shù)列{1/An}是等差數(shù)列; (2)求數(shù)列{AnA(n+2)}的前n項(xiàng)和Sn. 5、(1)a(n-1)/a(n)=[1+a(n-1)]/[1-a(n)] 兩邊除以a(n-1),得1/a(n)=[1/a(n-1)+1]/[1-a(n)] 整理得1/a(n)-1=1/a(n-1)+1 則1/a(n)-1/a(n-1)=2,且1/a(1)=1

故{1/a(n)}是以1為首項(xiàng)、2為公差的等差數(shù)列。

(2)由(1)可知1/a(n)=1+2(n-1)=2n-1,則a(n)=1/(2n-1) 所以a(n)a(n+2)=1/(2n-1)×1/(2n+3)=(1/4)[1/(2n-1)-1/(2n+3)]

2

S(n)=1/1×1/5+1/3×1/7+1/5×1/9+…+1/(2n-5) ×1/(2n-1)+1/(2n-3) ×1/(2n+1)+1/(2n-1) ×1/2n+3)

=(1/4) ×[1/1-1/5+1/3-1/7+1/5-1/9+…+1/(2n-5)-1/(2n-1)+1/(2n-3) -1/(2n+1)+1/(2n-1)-1/(2n+3)] =(1/4)[1+1/3-1/(2n+1)-1/(2n+3)] =1/3-(n+1)/[(2n+1)(2n+3)]

6.若則數(shù)列An=1+2+3+4+...+n,則數(shù)列{1/An}的前n項(xiàng)和Sn=_____ 6、a(n)=n(n+1)/2,1/a(n)=2/[n(n+1)]=2[1/n-1/(n+1)] 所以S(n)=2/(1×2)+2/(2×3)+…+2/[n(n+1)] =2[1-1/2+1/2-1/3+…+1/n-1/(n+1)] =2[1-1/(n+1)] =2n/(n+1)

7.已知數(shù)列{An}的通項(xiàng)An=(2^n)-1,則{An}的前n項(xiàng)和Sn=______ 7、S(n)=2^1-1+2^2-1+…+2^n-1 =2^1+2^2+…+2^n-(1+1+…+1) =2^(n+1)-2-n

8.已知等差數(shù)列中,前三項(xiàng)之和為6,末三項(xiàng)之和為60,Sn=231,則n=_____ 8、由題意可知: 第二項(xiàng)為a(2) =2 倒數(shù)第二項(xiàng)為a(n-1) =20

S(n)=n[a(2)+a(n-1)]/2=21n=231,所以n=11

9.等差數(shù)列{An}中,A1=25,S9=S17,則此數(shù)列前______項(xiàng)和最大.

9、S(9)=S(17),說明a(10)、a(11)、…、a(17)這的和為0,即前四項(xiàng)和后四項(xiàng)的值互為相反數(shù),故a(1)、a(2)、…、a(13)為正數(shù),從a(14)開始以后的項(xiàng)均為負(fù)數(shù),則前13項(xiàng)的和最大。

10.已知{An}是等比數(shù)列A2=2,A5=1/4 則A1A2+A2A3+A3A4+...+AnA(n+1)=___ 10、a(5)=a(2)×q^3,則q=1/2,a(n)=2^(3-n) 所以a(n)a(n+1)=2^(3-n)×2^(2-n)=2^(5-2n) 相當(dāng)于首項(xiàng)為2^3=8、公比為2^(-2)=1/4的 所求的和S(n)=8[1-(1/4)^n]/(1-1/4)=32/3×[1-2^(-2n)]

3

高中數(shù)列解題方法及綜合

高考遞推數(shù)列分類

類型1:滲透三角函數(shù)周期性

數(shù)列與三角函數(shù)的結(jié)合是一類創(chuàng)新試題,利用三角函數(shù)的周期性體現(xiàn)數(shù)列的變化,利用三角不等式進(jìn)行放縮是證明數(shù)列不等式的常見方法。

例1(2008年湖南卷,18,滿分12分)

n?n?)an?sin,n?1,2,3... 數(shù)列{an}滿足a1=1,a2=2,an?2?(1?cos22求a3,a4,并求數(shù)列{an}的通項(xiàng)公式;

22解:因?yàn)閍1?1,a2?2,所以a3?(1?cos2a4?(1?cos2?)a2?sin2??2a2?4?2)a1?sin2?2?a1?1?2,一般地當(dāng)n?2k?1(k?N?)時(shí),a2k?1?[1?cos2?a2k?1?1,即a2k?1?a2k?1?1(2k?1)?2k?1]a2k?1?sin2?22所以數(shù)列{a2k?1}是首項(xiàng)為1公差為1的等差數(shù)列因此a2k?1?k當(dāng)n?2k(k?N?)時(shí),a2k?2?[1?cos22k?2k?]a2k?sin2?2a2k22所以數(shù)列{a2k}是首項(xiàng)為2公比為2的等比數(shù)列因此a2k?2k

本題分為兩種情況,采取非常規(guī)的遞推數(shù)列求通項(xiàng)的方法,利用三角函數(shù)的誘導(dǎo)公式尋找遞推關(guān)系,體現(xiàn)三角函數(shù)的周期性,進(jìn)而求出該數(shù)列的通項(xiàng)為一分段數(shù)列。

例2(2009年江西,文,21,滿分12分)

22n?n?2?sin),其前n項(xiàng)和為 數(shù)列{an}的通項(xiàng)an?n(cos33(1)求sn;

s(2)令bn?3nn,求數(shù)列{bn}的前n項(xiàng)和Tn

n?4?n?1??2,n?2k?1(k?N)故數(shù)列{an}的通項(xiàng)公式為an???n?2?2,n?2k(k?N)4

n?n?2n?解:(1)由于cos?sin?cos,故333s3k?(a1?a2?a3)?(a4?a5?a6)?...?(a3k?2?a3k?1?a3k)12?2242?52(3k?2)2?(3k?1)222?(??3)?(??6)?...?[??(3k)2]222 133118k?5k(9k?4)2???...??2222k(4?9k)s3k?1?s3k?a3k?2k(4?9k)?(3k?1)2(3k?1)213k?21s3k?2?s3k?1?a3k?1????k???22236?n1??3?6,n?3k?2??(n?1)(1?3n)故sn??,n?3k?1,(k?N?)6??n(3n?4),n?3k?6?s9n?4(2)bn?3nn?n?424n113229n?4Tn?(?2?...?)n24441229n?44Tn?(13??...?n)244?1兩式相減得99?n1999n?4144?9n?4)3Tn?(13??...?n?1?)?(13?122444n4n1?419n?8?2n?3?2n?1 22813n故Tn???33?22n?322n?1例3(2009年江西,理8,5分)

22n?n??sin),數(shù)列{an}的通項(xiàng)an?n2(cos其前n項(xiàng)和為sn,則sn為( ) 3322A.470 B.490 C.495 D.510

類型2:an+1=an+f(n)

解法思路:把原遞推公式轉(zhuǎn)化為an+1-an=f(n),利用累加法(逐差相加法)求解

例4(2008,江西,理5)

5

1在數(shù)列{an}中,a1=2,an+1=an+ln(1?),則an=

nA.2+lnn B.2+(n-1) lnn C.2+nlnn D.1+n+lnn

例5(2009,全國(guó)I,理22)

1n?1在數(shù)列{an}中,a1=1,an+1=(1?)an?n

n2a(1)設(shè)bn?n,求數(shù)列{an}的通項(xiàng)公式;

n(2)求數(shù)列{an}的前n項(xiàng)和。

a?1an1解:(1)由已知得b1?a1?1,且n??nn?1n21即bn?1?bn?n 211從而b2?b1?,b3?b2?22...1bn?bn?1?n?1(n?2)21111于是bn?b1??2?...?n?1?2?n?1(n?2)2222又b1?1故所求通項(xiàng)公式為bn?2?(2)由(1)知an?n(2?n12n?1n2n?112)?2n?n?1令Tn??2kk?1,則2Tn??2kk?2k?11于是Tn?2Tn?Tn??2kk?1?k?0nn2n?1?4?n?22n?1又?(2k)?n(n?1)k?1nn?2所以sn?n(n?1)?n?1?42

類型3:an+1=f(n)an

解法思路:把原遞推公式轉(zhuǎn)化為求解

例6(2004,全國(guó)I,理15)

an?1?f(n),利用累乘法(逐商相乘法)an已知數(shù)列{an},滿足a1=1,an=a1+2a2+3a3+…+(n-1)an-1(n≥2),則{an}的通項(xiàng)an=_____

6

解:由已知,得an+1=a1+2a2+3a3+…+(n-1)an-1+nan,用此式減去已知式,得 當(dāng)n≥2時(shí),an+1-an=nan,即an+1=(n+1)an,又a2=a1

aaaa所以a1?1,2?1,,3?3,4?4,...n?n,將以上n個(gè)式子相乘,得a1a2a3an?1an?n!(n?2)2類型4:an+1=pan+q(其中p、q均為常數(shù),且pq(p-1)≠0)

解法思路:待定系數(shù)法,把原遞推公式轉(zhuǎn)化為an+1-t=p(an-t),其中qt?,再利用換元法轉(zhuǎn)化為等比數(shù)列求解,或轉(zhuǎn)化為二隊(duì)循環(huán)數(shù)列來解(見1?p后文),或直接用逐項(xiàng)迭代法求解。

例7(2008年,安徽,文21)

設(shè)數(shù)列{an}滿足a1 =a,an +1=c an +1-c,n∈N*,其中a、c為實(shí)數(shù),且c≠0 求數(shù)列{an}的通項(xiàng)公式; 解:方法一: 因?yàn)閍n+1-1=c(an-1)

所以當(dāng)a≠1時(shí),{an-1}是首項(xiàng)為a-1,公比為c的等比數(shù)列 所以an-1=( an-1)cn-1 即an=( an-1)cn-1+1 當(dāng)n=1時(shí),an=1仍滿足上式

數(shù)列{an}的通項(xiàng)公式為an=( a-1)cn-1+1 (n∈N*) 方法二:

由題設(shè)得:n≥2時(shí), an-1=c( an-1-1)=c2 (an-2-1)=…= cn-1(an-1)= (a-1)c n-1

所以an=( a-1)=c n-1+1 n=1時(shí),a1=a也滿足上式

所以{an}的通項(xiàng)公式為an=( a-1)cn-1+1 (n∈N*) 類型4的變式:an+1=pan+f(n)

解法思路:通過構(gòu)造新數(shù)列{bn},消去f(n)帶來的差異。

類型5 :an+1=pan+qn(其中p、q均為常數(shù),pq(p-1)(q-1)≠0)(或an+1=pan+rqn,其中p、q、r均為常數(shù))

解法思路:一般地,要先在原遞推公式兩邊同除以qn+1,得引入輔助數(shù)列{bn}(其中bn?an?1pan1??n?,n?1qqqqanp1b?b?),得即可轉(zhuǎn)化為類型3?;蛑苯觧nnqqq1(p?q))將原遞推式變形為an?1?x?qn?1?p(an?x?qn),(其中x?,則直p?q7

接轉(zhuǎn)化為等比數(shù)列

例8(2006,全國(guó)I,理22,12分)

412設(shè)數(shù)列{an}的前n項(xiàng)的和sn?an??2n?1?,n?1,2,3...

333求首項(xiàng)a1與通項(xiàng)an。

442解:當(dāng)n?1時(shí)a1?s1?a1???a1?2333412412當(dāng)n?2時(shí),an?sn?sn?1?an??2n?1??(an?1??2n?)

333333即an?4an?1?2n,所以an?2n?4(an?1?2n?1),所以a1?2所以an?2n?4?4n?1,所以an?4n?2n例9(2009,全國(guó)II,理19)

設(shè)數(shù)列{an}的前n項(xiàng)的和sn,已知a1?1,sn?1?4an?2 (1)設(shè)bn?an?1?2an,證明數(shù)列{bn}是等比數(shù)列;

(2)求數(shù)列{an}的通項(xiàng)公式。

解:(1)由已知有a1?a2?4a1?2,解得3a1?2?5,故b1?a2?2a1?3an?2?sn?2?sn?1?4an?1?2?(4an?2)?4an?1?4an于是an?2?2an?1?2(an?1?2an)即bn?1?2bn因此數(shù)列{bn}是首項(xiàng)為3,公比為2的等比數(shù)列(2)由(1)知,等比數(shù)列{bn}中b1?3,公比q?2所以an?1?2an?3?2n?1a?1an3于是n??2n?12n4a13因此數(shù)列{n}是首項(xiàng)為,公差為的等差數(shù)列242nan1331??(n?1)??n?4442n2所以an?(3n?1)?2n?2類型6:a。 ?pa?qa(其中p,q均為常熟)

n?2n?1n解法一(待定系數(shù)法):先把原遞推公式轉(zhuǎn)化為,an?2?san?1?t(an?1?san)

?s?t?p其中s, t滿足?

st??q?解法二(特征根法):對(duì)于由遞推公式an?2?pan?1?qan,a1=?,a2=?給出的數(shù)列{an},方程x2?px?q?0,叫做數(shù)列的特征方程。若x1,x2是特征方程的兩個(gè)

n?1根,當(dāng)x1?x2時(shí),數(shù)列{an}的通項(xiàng)為an?Ax1n?1?Bx2,其中A、B由a1=?,a2=?n?1決定(即把a(bǔ)1,a2,x1,x2和n=1,2,代入an?Ax1n?1?Bx2,得到關(guān)于A、B的方程組);

當(dāng)x1?x2時(shí),數(shù)列的通項(xiàng)為an??A?Bn?Ax1n?1,其中A、B由a1=?,a2=?決定(即把a(bǔ)1,a2,x1,x2和n=1,2,代入an??A?Bn?Ax1n?1,得到關(guān)于A、B的方程組)。

8

例10(2006,福建,文22)

已知數(shù)列{an}滿足a1=1,a2=3,an?2?3an?1?2an(n?N?)。 (1)證明:數(shù)列?an?2?an?是等比數(shù)列; (2)求數(shù)列{an}的通項(xiàng)公式; (3)若數(shù)列{bn}滿足4b1?14b2?1列。 解:(1)an?2?3an?1?2an, ?an?2?an?1?2(an?1?an)

a1=1,a2=3, a?an?1?2?an?1?an?(n?N?)?n?2,

an?1?an??an?2?an?是以a2?a1=2為首項(xiàng),2為公比的等比數(shù)列。

,證明{bn}是等差數(shù)4bn?1??an?1?n(n?N?)

b(2)an?2?an?2n(n?N?), an =?an?an?1?+ ?an?1?an?2? +

+ ?a2?a1?+a1

= 2n?1+ 2n?2++2+1

=2n-1(n?N?)

類型7 遞推公式為Sn與an的關(guān)系式(或Sn?f?an?)

??s1解法思路:這種類型一般利用an=???sn?sn?1an=sn?sn?1?f?an??f?an?1??n?2?消去an進(jìn)行求解。

?n?1?n?na?n?2?2或

例11.(2009,湖北,理,19)

?1?已知數(shù)列{an}的前項(xiàng)和Sn= -an-??+2(n為正整數(shù)),令bn=2nan,求證

?2?數(shù)列{bn}是等差數(shù)列,并求數(shù)列{an}的通項(xiàng)公式

?1?解:在Sn= ?an????2?n?1n?1+2中,令n=1,可得S1 = -a1+1=a1,

n?2?1?當(dāng)n?2時(shí),Sn-1= ?an?1????2?n?1?1?+2,?an=Sn?Sn-1=?an+an?1????2?n?1

?1?2an=an?1+??,即2nan=2n?1an?1+1

?2?又bn=2nan,?bn=bn?1+1,即當(dāng)n?2時(shí),bn-bn?1=1

又b1=2a1=1?數(shù)列{bn}是首項(xiàng)和公差均為1的等差數(shù)列,

n于是bn=n=2nan,?an=n.

2例12 (2008,全國(guó)II,理,20)

設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,已知a1=a,an?1=Sn+3n(n?N?), (Ⅰ)設(shè)bn=sn-3n,求數(shù)列{bn}的通項(xiàng)公式;

9

(Ⅱ)若an?1≥an(n?N?),求a的取值范圍。

解(Ⅰ)依題意sn?1-sn=an?1=sn+3n,即sn=2sn+3n,由此得sn?1-3n?1=2(sn-3n), 因此,所求通項(xiàng)公式為

bn=sn-3n=(a-3)2n?1,(n?N?)。

(Ⅱ)由(Ⅰ)知sn=3n+(a-3)2n?1,(n?N?),于是當(dāng)n?2時(shí),

an=sn-sn?1 =3n+(a-3)2n?1-3n?1-(a-3)2n?2 =2×3n?1+(a-3) 2n?2 an?1?an=4×3n?1+(a-3) 2n?2 =2n?2當(dāng)n?2時(shí),

n?2???3??12????a?3?,

?2??????3?12????2?n?2?a?3≥0

?a≥9。

又a2=a1+3>a1

綜上,所求的a的取值范圍是??9,???。

類型8 an+1=pan+an+b(p≠1,a≠0)

解法思路:這種類型一般利用待定系數(shù)法構(gòu)造等比數(shù)列,

即令an?1?x?n?1??y?p?an?xn?y?,與已知遞推式比較,解出x,y,從而轉(zhuǎn)化為?an?xn?y?是公比p為的等比數(shù)列。

例13.(2006山東,文,22)

1已知數(shù)列{an}中,a1=,點(diǎn)?n,2an?1?an?在直線y?x上,其中n?1,2,32(Ⅰ)令bn?an?1?an?3,求證數(shù)列{bn}是等比數(shù)列;

an?1?(n?1)an?n? bn?1an?1?an?122????

bnan?2?an?1?1an?1?an?1

an?1?an?1

12?.

an?1?an?12

31所以{bn}是以?為首項(xiàng),以為公比的等比數(shù)列

2410

(Ⅱ)求數(shù)列{an}的通項(xiàng)。 1解:(Ⅰ)由已知得a1?,2an?1?an?n,233113a2?,a2?a1????1??,44224bn?an?1?an?1,bn?1?an?2?an?1?1,3?1?(Ⅱ)由(Ⅰ)知bn?????4?2?31?an?1?an?1???n,2231?a2?a1?1???,2231a3?a2?1???222,31?an?an?1?1???n?122將以上各式相加得:311?an?a1?(n?1)??(?2?2223?an?n?n?2.2n?131???n,22?1),2n?1

類型9 a?par(p>0, an >0) n?1n解法思路:這種類型一般是等式兩邊取對(duì)數(shù)后轉(zhuǎn)化為an?1?pan?q,再利用待定系數(shù)法求解。

例14(2005,江西,理,21)

已知數(shù)列{an}的各項(xiàng)都是正數(shù),且滿足:a0?1,an?1?求數(shù)列的{an}通項(xiàng)公式an

1an(4?an),n?N. 211an(4?an)??(an?2)2?2,221?2?an?1?(an?2)2,易證2-an>0,兩邊取以為底的對(duì)數(shù),2n?1)n)n)log(2-a?2log(2-a?1,設(shè)bn?2log(2-a,則bn?1=2bn+1.111 222解:an?1?易求得bn?2n?1,?1??2-an????2?2n?1?1?,?an?2????2?2n?1.例15(2006,山東,理,22)

已知a1?2,點(diǎn)?an,an?1?在函數(shù)f?x??x2?2x的圖像上,其中n?1,2,3列

11

證明數(shù)

?lg?1?a??是等比數(shù)列

n解:由已知an?1?an2?2an, ?an?1?1??1?an?a1?2?an?11,兩邊同時(shí)取對(duì)數(shù)得lg?1?an?1??2lg?1?an?,即lg?1?an?1??2lg?1?an? 類型10 a

2??lg?1?an??是公比為2的等比數(shù)列。f(n)an ?n?1g(n)a?h(n)n解法思路:這種類型一般是等式兩邊取倒數(shù)后換元轉(zhuǎn)化為a ?pan?q。

n?1例17(2006,江西,理,22,本大題滿分14分)

3nan?13(n?2,n?N*) 已知數(shù)列?an?滿足:a1?,且an?22an?1?n?1求數(shù)列?an?的通項(xiàng)公式; 解:將條件變?yōu)椋??為

n?3nn11?n,據(jù)此得an?n(n?1) 1??,公比,從而1?an33?1a133n1nan?13(1?n?1an?1),因此?1????為一個(gè)等比例數(shù),其首項(xiàng)

an?n?類型11 apa?q ?nn?1ra?hn解法思路:如果數(shù)列?an?滿足下列條件:已知a1的值且對(duì)于n?N,都有

an?1?pan?qh(其中p、q、r、h均為常數(shù),且ph≠qr,r≠0, a1??),那么,

ran?hr12

可作特征方程x??1?px?q,當(dāng)特征方程有且僅有一根時(shí)x0,則??是等差數(shù)rx?h?an?x0??a?x?列;當(dāng)特征議程有兩價(jià)目相異的根x1、x2時(shí),則?n1?是等比數(shù)列。

?an?x2?例19(2009年,江西,理,22)

各項(xiàng)均為正數(shù)的數(shù)列?an?,aa?a,a2?b,且對(duì)滿足m?n?p?q的正整數(shù)都有m,n,p,q都有

ap?aqam?an ?(1?am)(1?an)(1?ap)(1?aq)14(1)當(dāng)a?,b?時(shí),求通項(xiàng)an;

25(2)證明:對(duì)任意a,存在與a有關(guān)的常數(shù)λ,使得對(duì)于每個(gè)正整數(shù)n,都有1??an??

ap?aqam?an解:(1)由得 ?(1?am)(1?an)(1?ap)(1?aq)a1?ana2?an?1?

(1?a1)(1?an)(1?a2)(1?an?1)14將a1?,a2?代入上式化簡(jiǎn)得

25an?2an?1?1,

an?1?21?an11?an?1?? 1?an31?an?1所以

?1?an?故數(shù)列??為等比數(shù)列,從而

1?an??1?an13n?1?n,即an?n 1?an33?13n?1可驗(yàn)證,an?n滿足題設(shè)條件。

3?1(2)由題設(shè)

am?an的值僅與m?n有關(guān),記為bm?n

(1?am)(1?an)13

則bn?1?a1?ana?an?

(1?a1)?(1?an)(1?a)?(1?an)考察函數(shù)f(x)?a?x(x?0),則在定義域上有

(1?a)(1?x)?1a?1?1?a,??1f(x)?g(a)??,a?1

?2?a?1?a,0?a?1?故對(duì)n?N*,bn?1?g(a)恒成立??又b2n?注意到0?g(a)?2an?g(a), 2(1?an)1,解上式得 21?g(a)?1?2g(a)1?g(a)?1?2g(a)g(a) ??an?g(a)g(a)1?g(a)?1?2g(a)取??1?g(a)?1?2g(a)1,即有?an??

?g(a)

類型12 數(shù)列中的數(shù)學(xué)歸納法

數(shù)學(xué)歸納法是數(shù)學(xué)證明中的常用方法,適用于猜想證明和數(shù)列不等式的證明,在直接求解或者利用放縮法證明存在困難時(shí),??墒褂脭?shù)學(xué)歸納法進(jìn)行證明。

例21(2008,天津,理,22)

在數(shù)列?an?與?bn??an?與?bn?中,a1?1,b1?4,數(shù)列?an?的前n項(xiàng)和Sn滿足

nsn?1?(n?3)sn?0,2an?1為bn與bn?1的等比中項(xiàng),n?N*

(Ⅰ)求a2,b2的值;

(Ⅱ)求?an?與?bn?數(shù)列的通項(xiàng)公式;

解:(Ⅰ)由題設(shè)有a1?a2?4a1?0,a1?1解得a2?3,由題設(shè)又有

24a2?b2b1,b1?4,解得b2?9。

(Ⅱ)由題設(shè)nsn?1?(n?3)sn?0,a1?1,b1?4,及a2?3,b2?9,進(jìn)一步可得a3?6,b3?16,a4?10,b4?25猜想

14

n(n?1),bn?(n?1)2,n?N* 21?(1?1)當(dāng)n?1時(shí),a1?,等式成立,當(dāng)n?2時(shí)用數(shù)學(xué)歸納法證明如下:

22?(2?1)(1)當(dāng) n=2時(shí),a2?,即等式成立。

2k(k?1)(2)假設(shè)當(dāng)n=k時(shí)等式成立,即ak?,k?2

2由題設(shè) 先證an?ksk?1?(k?3)sk ① (k?1)sk?(k?2)sk?1 ②

①的兩邊分別減去②的兩邊,整理得kak?1?(k?2)ak,從而

k?2k?2k(k?1)(k?1)?(k?1)?1?ak?1?ak??? kk22這就是說,當(dāng)n?k?1時(shí)等式也成立,根據(jù)(1)和(2)可知,等式an?對(duì)任何的n?2成立。

綜上所述,等式an?n(n?1)2n(n?1)對(duì)任何的n?N*都成立。 2再用數(shù)學(xué)歸納法證明bn?(n?1)2,n?N*

本題首先進(jìn)行猜想,然后利用數(shù)學(xué)歸納法證明,先猜想再證明是求數(shù)列通項(xiàng)的常用手段,數(shù)學(xué)歸納法也是證明數(shù)列不等式的常用方法。

數(shù)列經(jīng)典綜合題

等差數(shù)列與等比數(shù)列綜合題

例1 等比數(shù)列{an}的前n 項(xiàng)和為sn,已知S1,S3,S2成等差數(shù)列 (1)求{an}的公比q;

(2)求a1-a3=3,求sn 解:(Ⅰ)依題意有

a1?(a1?a1q)?2(a1?a1q?a1q2)

由于 a1?0,故2q2?q?0

15

1 又q?0,從而q?-

212 (Ⅱ)由已知可得a1?a(1?)?3 故a1?4

2

1n(41?(?))81n2 從而Sn? ?(1?(?))1321?(?)2例2 在正項(xiàng)數(shù)列?an?中,令Sn??i?1n1.

ai?ai?1(Ⅰ)若?an?是首項(xiàng)為25,公差為2的等差數(shù)列,求S100; (Ⅱ)若Sn?列;

1(Ⅰ)解:由題意得,?ai?ai?1ai?1?ai2np(p為正常數(shù))對(duì)正整數(shù)n恒成立,求證?an?為等差數(shù)

a1?an?1a201?a1,所以S100=?5

2(Ⅱ)證:令n?1,所以Sn??i?1np1,則p=1 ?a1?a2a1?a2np1=(1),

ai?ai?1a1?an?1Sn?1??i?1n?1(n?1)p1=(2), a1?an?2ai?ai?1(n?1)n1—=, a1?an?2a1?an?1an?1?an?2(2)—(1),得化簡(jiǎn)得(n?1)an?1?nan?2?a1(n?1)(3)

(n?2)an?2?(n?1)an?3?a1(n?1)(4),(4)—(3)得an?1?an?3?2an?2(n?1) 在(3)中令n?1,得a1?a3?2a2,從而?an?為等差數(shù)列

例3 已知{an}是公比為q的等比數(shù)列,且am,am?2,am?1成等差數(shù)列. (1)求q的值;

(2)設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,試判斷Sm,Sm?2,Sm?1是否成等差數(shù)列?說明理由. 解:(1)依題意,得2am+2 = am+1 + am

m+1 mm – 1

∴2a1q= a1q + a1q

在等比數(shù)列{an}中,a1≠0,q≠0,

∴2q2 = q +1,解得q = 1或?.

(2)若q = 1, Sm + Sm+1 = ma1 + (m+1) a1=(2m+1) a1,Sm + 2 = (m+2) a1

∵a1≠0,∴2Sm+2≠S m + Sm+1

16

1211?(?)m?221112若q =?,Sm + 1 =???(?)m 136221?(?)2111?(?)m1?(?)m?142114112?2Sm + Sm+1 = ??[(?)m?(?)m?1]=?(?)m

1133223321?(?)1?(?)22∴2 Sm+2 = S m + Sm+1

故當(dāng)q = 1時(shí),Sm , Sm+2 , Sm+1不成等差數(shù)列; 當(dāng)q =?時(shí),Sm , Sm+2 , Sm+1成等差數(shù)列.

例4 已知數(shù)列{an}的首項(xiàng)a1?a(a是常數(shù)),an?2an?1?n2?4n?2(n?N,n?2).(Ⅰ)?an?是否可能是等差數(shù)列.若可能,求出?an?的通項(xiàng)公式;若不可能,說明理由;

(Ⅱ)設(shè)b1?b,bn?an?n2(n?N,n?2),Sn為數(shù)列?bn?的前n項(xiàng)和,且

?Sn?是等比數(shù)列,求實(shí)數(shù)a、b滿足的條件. 解:(Ⅰ)∵a1?a,依an?2an?1?n2?4n?2(n?2,3,?)

∴a2?2a?4?8?2?2a?2 a3?2a2?9?12?2?4a?5

a4?2a3?2?8a?8 a2?a1?2a?2?a?a?2,a3?a2?2a?3,a4?a3?4a?3

若{an}是等差數(shù)列,則a2?a1?a3?a2,得a?1 但由a3?a2?a4?a3,得a=0,矛盾.

∴{an}不可能是等差數(shù)列

(Ⅱ)∵bn?an?n2

∴bn?1?an?1?(n?1)2?2an?(n?1)2?4(n?1)?2?(n?1)2?2an?2n2?2bn(n≥2)

∴b2?a2?4?2a?2

當(dāng)a≠-1時(shí), bn?0{bn}從第2項(xiàng)起是以2為公比的等比數(shù)列

∴Sn?b1?(2a?2)(2n≥2時(shí),

n?112?1)2?1?b?(2a?2)(2n?1?1)

Sn(a?1)2n?b?2a?2b?2a?2 ??2?n?1n?1Sn?1(a?1)2?b?2a?2(a?1)2?b?2a?2SnSn?1∴{Sn}是等比數(shù)列, ∴

(n≥2)是常數(shù) ∵a≠-1時(shí), ∴b-2a-2=0 當(dāng)

a=-1時(shí),

b2?0,由bn?2bn?1(n≥3),得bn?0(n≥2) ∴Sn?b1?b2????bn?b

∵{Sn}是等比數(shù)列 ∴b≠0

a??1綜上, {Sn}是等比數(shù)列,實(shí)數(shù)a、b所滿足的條件為???a??1 或??b?2a?2?b?0例5 設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,且滿足Sn=2-an,n=1,2,3,…. (Ⅰ)求數(shù)列{an}的通項(xiàng)公式;

(Ⅱ)若數(shù)列{bn}滿足b1=1,且bn+1=bn+an,求數(shù)列{bn}的通項(xiàng)公式; (Ⅲ)設(shè)cn=n(3-bn),求數(shù)列{cn}的前n項(xiàng)和Tn.

解:(Ⅰ)∵n=1時(shí),a1+S1=a1+a1=2

17

∴a1=1

∵Sn=2-an即an+Sn=2 ∴an+1+Sn+1=2 兩式相減:an+1-an+Sn+1-Sn=0 即an+1-an+an+1=0故有2an+1=an ∵an≠0 ∴

an?11?(n∈N*) an211

的等比數(shù)列.an=()n?1(n∈N*) 22

所以,數(shù)列{an}為首項(xiàng)a1=1,公比為(Ⅱ)∵bn+1=bn+an(n=1,2,3,…)

1∴bn+1-bn=()n-1

2得b2-b1=1

1b3-b2=

21b4-b3=()2

2……

1bn-bn-1=()n-2(n=2,3,…)

2將這n-1個(gè)等式相加,得

1111bn-b1=1+?()2?()3???()n?22222又∵b1=1,∴bn=3-2(

11?()n?112??2?2()n?1

121?21n-1

)(n=1,2,3,…) 21(Ⅲ)∵cn=n(3-bn)=2n()n-1

211111∴Tn=2[()0+2()+3()2+…+(n-1)()n-2+n()n-1] ①

22222111111而 Tn=2[()+2()2+3()3+…+(n-1)()n?1?n()n] ②

222222111111①-②得:Tn?2[()0?()1?()2???()n?1]?2n()n

22222211?()n2?4n(1)n?8?8?4n(1)n Tn=41222n1?21=8-(8+4n)n(n=1,2,3,…)

2例6 已知數(shù)列{an}中,a0?2,a1?3,a2?6,且對(duì)n≥3時(shí)

有an?(n?4)an?1?4nan?2?(4n?8)an?3.

18

(Ⅰ)設(shè)數(shù)列{bn}滿足bn?an?nan?1,n?N?,證明數(shù)列{bn?1?2bn}為等比數(shù)列,

并求數(shù)列{bn}的通項(xiàng)公式;

(Ⅱ)記n?(n?1)??2?1?n!,求數(shù)列{nan}的前n項(xiàng)和Sn

(Ⅰ) 證明:由條件,得an?nan?1?4[an?1?(n?1)an?2]?4[an?2?(n?2)an?3],

則an?1?(n?1)an?4[an?nan?1]?4[an?1?(n?1)an?2].

即bn?1?4bn?4bn?1.又b1?1,b2?0,所以bn?1?2bn?2(bn?2bn?1),

b2?2b1??2?0.

所以{bn?1?2bn}是首項(xiàng)為?2,公比為2的等比數(shù)列.

b2?2b1??2,所以bn?1?2bn?2n?1(b2?2b1)??2n.

bn?1bn1. ???2n?12n211?b?于是?nn?為以首項(xiàng),-為公差的等差數(shù)列.

22?2?兩邊同除以2n?1,可得

所以

bnb11??(n?1),得bn?2n(1?n). n2222(Ⅱ)an?2n?nan?1?n2n?1?n(an?1?2n?1),令cn?an?2n,則cn?ncn?1.

而c1?1, ?cn?n(n?1)??2?1?c1?n(n?1)??2?1. ∴an?n(n?1)??2?1?2n.

nan?n?n?(n?1)??2?1?n2n?(n?1)!?n!?n?2n,

?(n?1)!?n!?(1?2?2?22??n?2n).

∴Sn?(2!?1!)?(3!?2!)?令Tn=1?2?2?22?則2Tn=1?22?2?23??n?2n, ①

?(n?1)?2n?n?2n?1. ②

①-②,得?Tn=2?22?∴S?(n?1)!?(n?1)2n?1?1.

n?2n?n?2n?1,Tn=(n?1)2n?1?2.

?an?1?2an?3bn,例7 設(shè)數(shù)列?an?,?bn?滿足a1?1,b1?0且??bn?1?an?2bn,19

n?1,2,3,

(Ⅰ)求?的值,使得數(shù)列?an??bn?為等比數(shù)列; (Ⅱ)求數(shù)列?an?和?bn?的通項(xiàng)公式;

?,求極限lim(Ⅲ)令數(shù)列?an?和?bn?的前n項(xiàng)和分別為Sn和SnSn的值. n??S?n(Ⅰ)令cn?an??bn,其中?為常數(shù),若?cn?為等比數(shù)列,則存在q?0使得

cn?1?an?1??bn?1?q(an??bn).

又an?1??bn?1?2an?3bn??(an?2bn)?(2??)an?(3?2?)bn. 所以q(an??bn)?(2??)an?(3?2?)bn. 由此得(2???q)an?(3?2???q)bn?0,n?1,2,3,

由a1?1,b1?0及已知遞推式可求得a2?2,b2?1,把它們代入上式后得方程組

?2???q?0, 消去q解得???3. ??3?2???q?0下面驗(yàn)證當(dāng)??3時(shí),數(shù)列an?3bn為等比數(shù)列.

??an?1?3bn?1?(2?3)an?(3?23)bn?(2?3)(an?3bn) (n?1,2,3,), a1?3b1?1?0,從而an?3bn是公比為2?3的等比數(shù)列.

同理可知an?3bn是公比為2?3的等比數(shù)列,于是???3為所求. (Ⅱ)由(Ⅰ)的結(jié)果得an?3bn?(2?3)n?1,an?3bn?(2?3)n?1,解得

1an??2?3?2???????n?1?2?3??n?1?,b?3?2?3n??6????n?1?2?3??n?1?.

??

(Ⅲ)令數(shù)列?dn?的通項(xiàng)公式為dn?(2?3)n?1,它是公比為p?2?3的等比數(shù)

列,令其前n項(xiàng)和為Pn;

令數(shù)列?en?的通項(xiàng)公式為en?(2?3)n?1,它是公比為p??2?3的等比數(shù)列,令其前n項(xiàng)和為Pn?.

20

31??(Pn?Pn?). 由第(Ⅱ)問得Sn?(Pn?Pn?),Sn62Pn?1?SnPn?Pn?Pn ?3?. ?3?Pn??SnPn?Pn?1?Pn 由于數(shù)列?en?的公比0?2?3?1,則limPn??n??1.

1?(2?3)11()n?()n?111111?ppplim?0, ??2?3? ?,由于,則

n??P1npPn1?pn2?3n()?1pSPn??0,所以limn?3 于是limn??S?n??Pnn例8 數(shù)列?an?的各項(xiàng)均為正數(shù),Sn為其前n項(xiàng)和,對(duì)于任意n?N*,總有

an,Sn,an2成等差數(shù)列. (Ⅰ)求數(shù)列?an?的通項(xiàng)公式;

(Ⅱ)設(shè)數(shù)列?bn?的前n項(xiàng)和為Tn ,且bn?lnnxan2,求證:對(duì)任意實(shí)數(shù)x??1,e?(e是

常數(shù),e=2.71828???)和任意正整數(shù)n,總有Tn? 2;

(Ⅲ) 正數(shù)數(shù)列?cn?中,an?1??cn?,(n?N*).求數(shù)列?cn?中的最大項(xiàng).

n?1(Ⅰ)解:由已知:對(duì)于n?N*,總有2Sn?an?an2 ①成立

∴2Sn?1?an?1?an?12 (n ≥ 2)② ①--②得2an?an?an?an?1?an?1 ∴an?an?1??an?an?1??an?an?1?

∵an,an?1均為正數(shù),∴an?an?1?1 (n ≥ 2) ∴數(shù)列?an?是公差為1的等差數(shù)列

21

22又n=1時(shí),2S1?a1?a12, 解得a1=1 ∴an?n.(n?N*)

(Ⅱ)證明:∵對(duì)任意實(shí)數(shù)x??1,e?和任意正整數(shù)n,總有bn?lnnxan2≤

1. n2∴Tn?111111?????1????? 222?n?1?n1?22?312n?1?1?111111???????2??2 223n?1nn2(Ⅲ)解:由已知 a2?c1?2?c1?2,

a3?c2?3?c2?33,a4?c3?4?c3?44?2,a5?c4?5?c4?55534

易得 c1?c2,c2?c3?c4?... 猜想 n≥2 時(shí),?cn?是遞減數(shù)列.

1?x?lnxlnx1?lnxx令f?x?? ,則f??x???22xxxlnx?1,則1?lnx?0,即f??x??0. ∵當(dāng)x?3時(shí),∴在?3,???內(nèi)f?x?為單調(diào)遞減函數(shù). 由an?1?cnn?1知lncn?ln?n?1?.

n?1∴n≥2 時(shí), ?lncn?是遞減數(shù)列.即?cn?是遞減數(shù)列.

又c1?c2 , ∴數(shù)列?cn?中的最大項(xiàng)為c2?33.

例9 設(shè)?an?是公差不為零的等差數(shù)列,Sn為其前n項(xiàng)和,滿足

a22?a32?a42?a52,S7?7。

(1)求數(shù)列?an?的通項(xiàng)公式及前n項(xiàng)和Sn; (2)試求所有的正整數(shù)m,使得

22amam?1為數(shù)列?an?中的項(xiàng)。 am?222解:(1)設(shè)公差為d,則a2?a5?a4?a3,由性質(zhì)得?3d(a4?a3)?d(a4?a3),

22

因?yàn)閐?0,所以a4?a3?0,即2a1?5d?0,又由S7?7得

7?67a1?d?7,解得a1??5,

2d?2,

amam?1(2m?7)(2m?5)(2)=,設(shè)2m?3?t,

2m?3am?2 (方法一)則

amam?1(t?4)(t?2)8?t??6, 所以t為8的約數(shù) =

ttam?2

(方法二)因?yàn)楣?p>amam?1(am?2?4)(am?2?2)8??am?2?6?為數(shù)列?an?中的項(xiàng), am?2am?2am?28為整數(shù),又由(1)知:am?2為奇數(shù),所以am?2?2m?3??1,即m?1,2 am+2經(jīng)檢驗(yàn),符合題意的正整數(shù)只有m?2。

例10 已知?an?是公差為d的等差數(shù)列,?bn?是公比為q的等比數(shù)列。 (1) 若an?3n?1,是否存在m、k?N*,有am?am?1?ak?說明理由; (2) 找出所有數(shù)列?an?和?bn?,使對(duì)一切n?N*,

an?1?bn,并說明理由; an(3) 若a1?5,d?4,b1?q?3,試確定所有的p,使數(shù)列?an?中存在某個(gè)連續(xù)p項(xiàng)的和是數(shù)列?bn?中的一項(xiàng),請(qǐng)證明。

解:(1)由am?am?1?ak,得6m?5?3k?1, 整理后,可得k?2m?4,3m、k?N?,?k?2m為整數(shù),

?不存在m、k?N?,使等式成立。

23

(2)若

an?1a1?nd?bn,即?b1qn?1, (*) aa1?(n?1)d(?。┤鬱?0,則1?b1qn?1?bn。

當(dāng){an}為非零常數(shù)列,{bn}為恒等于1的常數(shù)列,滿足要求。 (ⅱ)若d?0,(*)式等號(hào)左邊取極限得lima1?nd(*)式等號(hào)右邊?1,

n??a?(n?1)d1的極限只有當(dāng)q?1時(shí),才能等于1。此時(shí)等號(hào)左邊是常數(shù),?d?0,矛盾。 綜上所述,只有當(dāng){an}為非零常數(shù)列,{bn}為恒等于1的常數(shù)列,滿足要求。 (3)an?4n?1,bn?3n,n?N*

設(shè)am?1?am?2????am?p?bk?3k,p、k?N*,m?N.

4(m?1)?1?4(m?p)?1p?3k,

23k?4m?2p?3?,?p、k?N*,?p?35,s?N.

p取k?3s?2,4m?32s?2?2?3s?3?(4?1)2s?2?2?(4?1)s?3?0, 由二項(xiàng)展開式可得正整數(shù)M1、M2,使得(4-1)2s+2=4M1+1,

2?(4?1)s?8M2?(?1)s2,

?4m?4(M1?2M2)?(?1)s?12,?存在整數(shù)m滿足要求.

??故當(dāng)且僅當(dāng)p=3s,s?N時(shí),命題成立.

二、點(diǎn)列綜合題

例11 設(shè)曲線c:y?x2(x?0)上的點(diǎn)為P0(x0,y0),過P0作曲線c的切線與x軸交于Q1,過Q1作平行于y軸的直線與曲線c交于P1(x1,y1),然后再過P1作曲線c的切線交x軸于Q2,過Q2作平行于y軸的直線與曲線c交于P2(x2,y2),依此類推,作出以下各點(diǎn):P0,Q1,P1,Q2,P2,Q3,…Pn,Qn+1…,已知x0?2,設(shè)Pn(xn,yn)(n?N)

(1)求出過點(diǎn)P0的切線方程; (2)設(shè)xn?f(n),求f(n)的表達(dá)式;

24

(3)設(shè)Sn?x0?x1???xn,求

解:(1) ?k0?2x0?4∴過點(diǎn)P0的切線段為y?4?4(x?2)即4x?y?4?0

2 (2)?kn?2xn ∴過點(diǎn)Pn的切線方程為y?xn?2xn(x?xn)

將Qn?1(xn?1,0)的坐標(biāo)代入方程得:?xn2?2xn(xn?1?xn) ?xn?1?xn?xn?1?1

2xn2 故數(shù)列{xn}是首項(xiàng)為x0?2,公比為1的等比數(shù)列

2 ?xn?f(n)?2?(1)n即f(n)?(1)n?1

22 (3)?S2(1?n?)2n?1?S?4(1?1)

n12n?11?21 ?limSn?lim4(1?1)?4 n?1n??n??2bn例12 已知點(diǎn)Pa滿足:,且已知a?a·b,b?,nN?,b?nn?n?1nn?1n?1n21?an?12?P0?,? ?33? (1)求過點(diǎn)P0,P1的直線l的方程;

(2)判斷點(diǎn)Pn?n?2?與直線l的位置關(guān)系,并證明你的結(jié)論;

(3)求點(diǎn)Pn的極限位置。

12解:(1)由a,得: ?,b?003321313?3,?a??? b1124344?1?1????3? 顯然直線l的方程為x?y? 113?,b? (2)由a,得: 114425

31414?4, b?a??? 22255?1?1????4? ∴點(diǎn)Pl,猜想點(diǎn)Pn?n?2?在直線l上,以下用數(shù)學(xué)歸納法證明: 2? 當(dāng)n=2時(shí),點(diǎn)Pl 2? 假設(shè)當(dāng)n時(shí),點(diǎn)P ?kk(?2)l,即ab1k?k?k? 當(dāng)n時(shí), ?k?1 a?b?ab·?bk?1k?1kk?1k?1

??1?ak?bk?1 ??1?ak?bkbk ?21?ak1?ak?1 ∴點(diǎn)Pl k?1??l?n?2 綜上,點(diǎn)P ?nbn (3)由a,得: ?ab·,b?,ab??n?1nn?1n?1nn121?anb1?aannna?a·?a·?a0??n?1nnn?221?a1?a1?annn

11???1aan?1n?1?1 ∴數(shù)列??是以?3為首項(xiàng),公差為1的等差數(shù)列

a0?an?11?3?n,an?ann?31n?2bn?1?an?1??n?3n?3 ?lima?lim1?0

nn??n??n?321?n?2n?1limbn?lim?limn??n??n?3n??31?n?26

? P???P01,??n 即點(diǎn)Pn的極限位置為點(diǎn)P(0,1) 例13 如圖,P1(x1,y1),P2(x2,y2),,Pn(xn,yn),(0?y1?y2??yn)是曲線

C:y2?3x(y?0)上的n個(gè)點(diǎn),點(diǎn)Ai(ai,0)(i?1,2,3,,n)在x軸的正半軸上,

?Ai?1AiPi是正三角形(A0是坐標(biāo)原點(diǎn)) .(Ⅰ) 寫出a1,a2,a3;

(Ⅱ)求出點(diǎn)An(an,0)(n?N*)的橫坐標(biāo)an關(guān)于n的表達(dá)式; (Ⅲ)設(shè)bn?111???an?1an?2an?3?1,若對(duì)任意正整數(shù)n,當(dāng)m???1,1?時(shí),a2n不等式t2?2mt?1?bn恒成立,求實(shí)數(shù)t的取值范圍. 6. 解:(Ⅰ) a1?2,a2?6,a3?12. (Ⅱ)依題意An(an,0),An?1(an?1,0),則

a?an?a?anxn?n?1,yn?3?n?122???… 3分 ?y P3 P2 P1 在正三角形PnAn?1An中,有

A0 yn?33|An?1An|?(an?an?1) . 22O A1 A2 A3 x 3?a?an??3?n?1?(an?an?1). ?22???an?an?1?2(an?1?an),

?an2?2an?1an?an?12?2(an?an?1)(n?2,n?N*) ,

同理可得an?12?2an?1an?an2?2(an?1?an)(n?N*) . ② ①-②并變形得

(an?1?an?1)(an?1?an?1?2an?2)?0(n?2,n?N*)

27

an?1?an?1,

?an?1?an?1?2an?2?0 ,

?(an?1?an)?(an?an?1)?2(n?2,n?N*) .

∴數(shù)列?an?1?an?是以a2?a1?4為首項(xiàng),公差為2的等差數(shù)列.

?an?1?an?2(n?1),(n?N*) , …………………………………… 7分

?an?a1?(a2?a1)?(a3?a2)?(a4?a3)??2(1?2?3??n)?n2?n.

?(an?an?1),

?an?n(n?1)(n?N*).

(Ⅲ)解法1 :∵bn?1an?21an?3?111???an?1an?2an?3?1a2n?21an?4???1a2n?2?1(n?N*), a2n∴bn?1??1(n?N*).

?bn?1?bn?a2n?11 an?1?111??

(2n?1)(2n?2)(2n?2)(2n?3)(n?1)(n?2)?2(2n2?2n?1)?. (2n?1)(2n?2)(2n?3)(n?2)∴當(dāng)n?N*時(shí),上式恒為負(fù)值, ∴當(dāng)n?N*時(shí),bn?1?bn, ∴數(shù)列?bn?是遞減數(shù)列.

?bn的最大值為b1?11?. a261?bn恒成立,則不等6若對(duì)任意正整數(shù)n,當(dāng)m???1,1?時(shí),不等式t2?2mt?式t2?2mt?11?在m???1,1?時(shí)恒成立,即不等式t2?2mt?0在m???1,1?時(shí)恒6628

成立.

設(shè)f(m)?t2?2mt,則f(1)?0且f(?1)?0,

2??t?2t?0∴?2 ??t?2t?0解之,得 t??2或t?2, 即t的取值范圍是(??,?2)?(2,??).

??12例14 △ABC中,|AB|=|AC|=1,AP1為AB邊上的一點(diǎn),BP≠AB,B·AC?,132從P1向BC作垂線,垂足是Q1;從Q1向CA作垂線,垂足是R1;從R1向AB作垂線,垂足是P2,再由P2開始重復(fù)上述作法,依次得Q2,R2,P3;Q3,R3,P4……

(1)令BPn為xn,尋求BPn與BPn?1(即

xxn與n?1)之間的關(guān)系。

(2)點(diǎn)列P是否一定趨,PPP,,……P1234n向于某一個(gè)定點(diǎn)P0?說明理由;

1B|?1,|BP|? (3)若|A,則是否存在正整13數(shù)m,使點(diǎn)P0與Pm之間的距離小于0.001?若存在,求m的最小值。

??1解:(1)由|AB|=|AC|=1,A B·AC?,∴∠BAC?60°2 從而△ABC為邊長(zhǎng)為1的正三角形

1BQ?BP·cos60°?x 則B,于是 P?x,則BPx?nnnnnn?1n?121Q?1?xn ∴Cn211RC?Q·°cos60?(1?x) 同樣 C nnn221111R?1?(1?x)??x A nnn2224111P?AR·°cos60?(?x) 又A n?1nn22411131P?1?(?x)??x B n?1nn2244831 即xn?1??xn

4829

212 (2)由(1)可得:x ???(x?)n?1n3832221 ∴{的等比數(shù)列 x?},當(dāng)x≠時(shí),是以x?為首項(xiàng),公比為?n113338221n?1 ∴x ??(x?)(?)n13382 當(dāng)n ???時(shí),x?n32 ∴點(diǎn)Pn趨向點(diǎn)P0,其中P0在AB上,且BP0?

32211m?11m?1 (3)P P??|x||?x?|()?()0mm1338381000m?1m?11 由| PP|?0.001得()?0.003,∴8?0m83000m?11 當(dāng)m ?4時(shí),8?3∴m?4的最小值為4 ,m例15 已知曲線Cn:x2?2nx?y2?0(n?1,2,).從點(diǎn)P(?1,0)向曲線Cn引斜率為kn(kn?0)的切線ln,切點(diǎn)為Pn(xn,yn). (1)求數(shù)列{xn}與{yn}的通項(xiàng)公式; (2)證明:x1?x3?x5??x2n?1?1?xnx?2sinn. 1?xnyn解:(1)設(shè)直線ln:y?kn(x?1),聯(lián)立x2?2nx?y2?0得

222222(1?kn)x2?(2kn?2n)x?kn?0,則??(2kn?2n)2?4(1?kn)kn?0,∴

kn?n2n?1(?n2n?1舍去)

2knn2n?1nn2y?k(x?1)?x?,即,∴ x??nnnn2n?1n?11?kn(n?1)22nn1?xnn?1??(2)證明:∵

n1?xn1?n?11?x1?x3?x5?????x2n?1?

1 2n?1132n?1132n?1??????????????242n352n?130

1 2n?1∴x1?x3?x5?????x2n?1?1?xn 1?xn由于

xn1?xn1,可令函數(shù)f(x)?x?2sinx,則??yn2n?11?xn令f'(x)?0,得cosx?f'(x)?1?2cosx,

?2,給定區(qū)間(0,),則有f'(x)?0,

42??則函數(shù)f(x)在(0,)上單調(diào)遞減,∴f(x)?f(0)?0,即x?2sinx在(0,)恒

44成立,又0?11???, 2n?134則有

1?xnx11?2sin?2sinn. ,即2n?12n?11?xnyn例16 數(shù)軸上有一列點(diǎn)P1,P2,P3,…,Pn,…,已知當(dāng)n?2時(shí),點(diǎn)Pn是把線段

Pn – 1 Pn+1作n等分的分點(diǎn)中最靠近Pn+1的點(diǎn),設(shè)線段P1P2,P2P3,…,Pn Pn + 1的長(zhǎng)度分別為a1,a2,a3,…,an,其中a1 = 1.

(1)寫出a2,a3和an(n?2,n?N*)的表達(dá)式; (2)證明a1 + a2 + a3 +…+an < 3(n?N*); (3)設(shè)點(diǎn)Mn( n,an)(n > 2,n?N*),在這些點(diǎn)中是否存在兩個(gè)點(diǎn)同時(shí)在函數(shù)y?k(k?0)的圖像上,如果存在,請(qǐng)求出點(diǎn)的坐標(biāo);如果不存在,請(qǐng)2(x?1)說明理由.

.解:(1) 由已知Pn?1Pn?(n?1)PnPn?1,

令n = 2,P1P2 = P2P3,所以a2 = 1, 令n = 3,P2P3 = 2P3P4,所以a3?, 同理,

an1?. an?1n?112所以an?(2) 因?yàn)?p>111an?1?an?2?n?1n?1n?2?(n?1)11??1!2!??11n?1n?22?111?(n?2) 2(n?1)!12n?2(n?2)

?12n?211?(n?1)!1?2?3?4??an?1?1222?所以a1?a2?a3?111?1?1??2?(n?1)!22

11?()n?112?1??3?()n?2?3(n?2).

121?231

而n = 1時(shí),易知a1 = 1 < 3成立,所以a1?a2?a3??an?3(n?N*)

(3) 假設(shè)有兩個(gè)點(diǎn)A(p,ap),B(q,aq)(p?q,p、q?N*,且p?2,q?2),都在函數(shù)y?k (x?1)2(p?1)2(q?1)2kk?k,?k. 即ap?.所以,aq?22(p?1)!(q?1)!(p?1)(q?1)(p?1)2(q?1)2?消去k得,……① (p?1)!(q?1)!n2以下考查數(shù)列{bn},bn?的增減情況,

n!n2(n?1)2n?(n?1)2n2?3n?1, bn?bn?1?????n!(n?1)!(n?1)!(n?1)!當(dāng)n > 2時(shí),n2 – 3n + 1 > 0,所以對(duì)于函數(shù){bn}有b2 > b3 > b4 > … >

bn > …

所以①式不能成立,

所以,不可能有兩個(gè)點(diǎn)同時(shí)在函數(shù)y?k圖像上. (x?1)2例17 在直角坐標(biāo)系中,有一點(diǎn)列P1(a1,b1),P2(a2,b2),…,Pn(an,bn),…對(duì)每一個(gè)正整數(shù)n,點(diǎn)Pn在給定的函數(shù)y=log3(2x)的圖像上.而在遞增數(shù)列{an}中,an與an+1是關(guān)于x的方程4x2-8nx+4n2-1=0(n∈N*)的兩個(gè)根. (Ⅰ)求點(diǎn)Pn的縱坐標(biāo)bn的表達(dá)式;

bnc1c2cn

(Ⅱ)記cn=3,n∈N*.證明+2+…+n<3;

222

11

解:(Ⅰ)解方程4x2-8nx+4n2-1=0,得x1=n-,x2=n-,

22

111

∵{an}是遞增數(shù)列,∴an=n-,an+1=n-,即an=n-( n∈N*),

222又因?yàn)镻n(an,bn)在函數(shù)y=log3(2x)的圖像上,所以bn=log3(2n-1).

bn

(Ⅱ)因?yàn)閏n=3,n∈N*,所以cn=2n-1

c1c2cn132n-1

設(shè)Dn=+2+…+n,即Dn=+2+…+n, ①

2222221132n-32n-1

所以Dn=2+3+…+n+n+1, ②

22222111112n-1

由①-②得Dn=++2+…+n?1-n+1,則

222222

32

1n?1

1-()

21112n-12n-1

所以Dn=1+1++2+…n?2-n=1+-n 222212

1-2=3-

12n-1

-n<3, 2n?22

1例18 已知點(diǎn)列B1(1,y1)、B2(2,y2)、…、Bn(n,yn)(n∈N)順次為一次函數(shù)y?14x?12圖像上的點(diǎn),點(diǎn)列A1(x1,0)、A2(x2,0)、…、An(xn,0)(n∈N)順次為x軸正半軸上的點(diǎn),其中x1=a(0<a<1),對(duì)于任意n∈N,點(diǎn)An、Bn、An+1構(gòu)成一個(gè)頂角的頂點(diǎn)為Bn的等腰三角形。

⑴求數(shù)列{yn}的通項(xiàng)公式,并證明{yn}是等差數(shù)列; ⑵證明xn+2-xn為常數(shù),并求出數(shù)列{xn}的通項(xiàng)公式;

⑶在上述等腰三角形AnBnAn+1中,是否存在直角三角形?若有,求出此時(shí)a值;若不存在,請(qǐng)說明理由。

11n?12解:(1)yn?4(n?N),∵yn+1-yn=14,∴{yn}為等差數(shù)列

(2)因?yàn)?AnBnAn?1與?An?1Bn?1An?2為等腰三角形.

?xn?xn?1?n??2所以?,兩式相減得 xn?2?xn?2。

x?x?n?1n?2?n?1??2注:判斷xn?2?xn?2得2分,證明得1分

∴x1,x3,x5,…,x2n-1及x2,x4,x6 ,…,x2n都是公差為2的等差數(shù)列,

n?a?1 (當(dāng)n為奇數(shù)) ∴xn????n-a (當(dāng)n為偶數(shù))11 (3)要使AnBnAn+1為直角三形,則 |AnAn+1|=2yBn=2(n)?xn+1-xn=2(n) ?12?1244 當(dāng)n為奇數(shù)時(shí),xn+1=n+1-a,xn=n+a-1,∴xn+1-xn=2(1-a).

111 ?2(1-a)=2(n) ?a=12(n為奇數(shù),0<a<1) (*) ?12?n441 取n=1,得a=23,取n=3,得a=6,若n≥5,則(*)無解;

33

當(dāng)偶數(shù)時(shí),xn+1=n+a,xn=n-a,∴xn+1-xn=2a.

11 ∴2a=2(n)?a=n(n為偶數(shù),0<a<1) (*?), ?12?12447取n=2,得a=12,若n≥4,則(*?)無解.

71 綜上可知,存在直角三形,此時(shí)a的值為2、、6312.

三、數(shù)列與向量交匯的綜合題 例19

a=?Sn,1?, b=?1,2an?2已知Sn為數(shù)列?an?的前n項(xiàng)和,???n?1?,a?b

???a?(1)求證:?n為等差數(shù)列; n?2??(2) 若bn?立.

解(1)?a?b

??n?2011an,問是否存在n0, 對(duì)于任意k(k?N?),不等式bk?bn0成n?1??Sn?2an?2n?1?0

?Sn?1?2an?1?2n?2?0

?an?1?2an?2n?1 a?1an?n?n?1 n?122?a?為等差數(shù)列 ??nn?2??(2)

an??2?(n?1)??(n?1) n234

?bn??2011?n?2n令bn?1?bn?2010?n?2n?1??2011?n?2n

n?2009bn的最大值為b2010?b2009?n0?2009或2010例20 在直角坐標(biāo)平面中,已知點(diǎn)P1(1,2),P2(2,22),P3(3,23),?Pn(n,2n),其中n是正整數(shù),對(duì)平面上任一點(diǎn)A0,記A1為A0關(guān)于點(diǎn)P1的對(duì)稱點(diǎn),A2為A1關(guān)于點(diǎn)P2的對(duì)稱點(diǎn),……,An為An-1關(guān)于點(diǎn)Pn的對(duì)稱點(diǎn). (1)求向量A0A2的坐標(biāo);

(2)對(duì)任意偶數(shù)n,用n表示向量A0An的坐標(biāo). (1)設(shè)An(xn,yn),?An與An?1關(guān)于點(diǎn)Pn(n,2n)對(duì)稱

?xn?xn?1?2n?x1?2?x0?x2?4?x1?2?x0 ???,??n?1?y1?4?y0?y2?8?y1?4?y0?yn?yn?1?2故A0A2?(x2?x0,y2?y0)?(2,4)

?x?xn?1?2n (2)??n?xn?1?2(n?1)?xn?2?xn?1?xn?1?xn?1?2

x?x?2(n?1)n?n?1同理可得:yn?1?yn?1?2n?1?An?1An?1?(xn?1?xn?1,yn?1?yn?1)?(2,2n?1) 故A0An?A0A2?A2A4???An?2An

n??22???2n?2?4? n2(1?4) ?(2,22)?(2,24)???(2,2n)??2?,?????n,?21?43??????例21 已知數(shù)列{an}的首項(xiàng)a1?1,a2?3,前n項(xiàng)和為Sn,且Sn?1、Sn、Sn?1(n ≥2)分別是直線l上的點(diǎn)A、B、C的橫坐標(biāo),AB?bn?1?log2(an?1)?bn.

2an?1BC,設(shè)b1?1,an⑴ 判斷數(shù)列{an?1}是否為等比數(shù)列,并證明你的結(jié)論;

35

n4⑵ 設(shè)cn?,證明:?Ck?1.

anan?1k?1bn?1?1n?1

解:⑴由題意得

Sn?1?Sn2an?1??an?1?2an?1

Sn?Sn?1an?an?1?1?2(an?1)(n≥2),又∵a1?1,a2?3

n?數(shù)列{a[則an?1?2n?1}是以a1?1?2為首項(xiàng),以2為公比的等比數(shù)列。

n?a?2n?1(n?N*)]

⑵由an?2n?1及bn?1?log2(an?1)?bn得bn?1?bn?n

?nn(n?1)1142nbn?1???, 則cn? ?n2anan?1(2?1)(2n?1?1)2n?12n?1?1bn?1?1n?11??11??11?1??1?1C???????????????????k22334nn?12?12?12?12?12?12?12?12?1????????k?1 ?1?12n?1?1?1

四、數(shù)列與函數(shù)交匯的綜合題

(x?1)4?(x?1)4例22 已知函數(shù)f(x)?(x?0)。 44(x?1)?(x?1)(Ⅰ)若f(x)?x且x?R,則稱x為f(x)的實(shí)不動(dòng)點(diǎn),求f(x)的實(shí)不動(dòng)點(diǎn); (II)在數(shù)列{an}中,a1?2,an?1?f(an)(n?N?),求數(shù)列{an}的通項(xiàng)公式。

x4?6x2?1解:(Ⅰ)由f(x)?及f(x)?x得

4x3?4x1x4?6x2?12422或(舍去), x???x?3x?2x?1?0?x?134x3?4x所以x?1或?1,即f(x)的實(shí)不動(dòng)點(diǎn)為x?1或x??1;

(an?1)4?(an?1)4an?1?1(an?1)4?an?1?(II)由條件得an?1??????,從而有

(an?1)4?(an?1)4an?1?1(an?1)4?an?1?lnan?1?1a?1?4lnn, an?1?1an?136

4由此及l(fā)n故有

?a?1?a1?1?ln3?0知:數(shù)列?lnn?是首項(xiàng)為ln3,公比為4的等比數(shù)列,a1?1?an?1?an?1an?14n?134?1n?1ln?4ln3??3?an?4n?1(n?N?)。an?1an?13?1

n?1例23 二次函數(shù)f(x)符合f(x)?0,且f(x)?2x2恒成立,f(1)?1 (1)求f(0)并求f(x)的解析式; (2)若an?f(1)f(2)??12?f(n)1,bn?,求數(shù)列?bn?前n項(xiàng)和Sn.并求limSn.

n??nan (3)若cn?1?f(cn),且c1?2,記Tn?c1?c2?...?cn,求符合Tn?2008最小自然數(shù)n.

f(0)?2?02?0   ?f(0)?0 .解:(1)f(0)?0 又:?f(x)?ax2 f(x)?ax2?bx  對(duì)稱軸x?0即b?0 ?a?1  ?f(x)?x2 又f(1)?1  1222(2)an???12Sn?2(1?n2??1?2?n?n?n(n?1)211?2(?) bn?n(n?1)nn?121?1?)??2. ); limSn?lim?2(1?n??n??n?1n?1??2(3)C1?2.  Cn?1?(Cn) ?Cn?2 ?Tn?2?2?2?212482n?1

22n?1?2(1?2?4??2n?1)?2(2n?1)?2008

?n?4,?nmin?4 例24 已知函數(shù)f?x??14x?2?x?R?,點(diǎn)P1?x1,y1?,P2?x2,y2?是函數(shù)f?x?圖像上的

12兩個(gè)點(diǎn),且線段P1P2的中點(diǎn)P的橫坐標(biāo)為. ⑴求證:點(diǎn)P的縱坐標(biāo)是定值;

n?⑵若數(shù)列?an?的通項(xiàng)公式為an?f?求數(shù)列?an?的前m項(xiàng)的???m?N,n?1,2,?,m?,

?m?和Sm;

37

解:⑴由題可知:x1?x2?2??1,所以,

114x?4x?4y1?y2?f?x1??f?x2??x??4?24x?24x?24x?2121212?1??24x?4x?44x?4x?41?x?x??4?24x?4x?424x?4x?42121212?

?12??12?

點(diǎn)P的縱坐標(biāo)yP?y1?y21?是定值,問題得證. 24?m??m?2n??m?n?1⑵由⑴可知:對(duì)任意自然數(shù)m,n,f????f???恒成立.

1??2??m?2??m?1??m?由于Sm?f????f?????f???f???f??,故可考慮利用倒寫求和

?m??m??m??m??m??1??2??m?2??m?1??m?Sm?f???f?????f???f???f???m??m??m??m??m?的方法.即由于:

mm?1m?221???????????f???f???f?????f???f???m??m??m??m??m???1???m?1??m?1????2??m?2???1???m?2Sm??f???f?????f???f???????f???f????2f???m????m??m???m???m? ??m???m?所以,

11??m?1??2f(1)??3m?1?26所以,Sm?1?3m?1? 12例25 設(shè)f1(x)=

f(0)?12,定義fn+1 (x)= f1[fn(x)],an =n(n∈N*).

fn(0)?21?x(1) 求數(shù)列{an}的通項(xiàng)公式; (2) 若T2n與

Qn的大小,并說明理由. 解:(1)∵f1(0)=2,a1=

2?112=,fn+1(0)= f1[fn(0)]=,

1?fn(0)2?244n2?n(n∈N*),試比較9T2n?a1?2a2?3a3???2na2n,Qn=24n?4n?12?1fn?1(0)?11?fn(0)1?fn(0)1fn(0)?11∴an+1==== -= -an.

2fn?1(0)?24?2fn(0)2fn(0)?22?21?fn(0)∴數(shù)列{an}是首項(xiàng)為,公比為-的等比數(shù)列,∴an=(?(2)∵T2 n = a1+2a 2+3a 3+…+(2n-1)a 2 n?1+2na 2 n,

38

1412141n?1

). 2∴?111111T2 n= (-a1)+(-)2a 2+(-)3a 3+…+(-)(2n-1)a2 n-1+(?)2na2 n

222222= a 2+2a 3+…+(2n-1)a2 n-na2 n.

兩式相減,得T2 n= a1+a2+a 3+…+a2 n+na2 n.

1?12n?1?(?)?34?2?+n×1(-1)2n?1=1-1(-1)2n+n(-1)2n?1. ∴T2n =?1242662421?2111n113n?1T2n =-(-)2n+(-)2n?1=(1-2n).

99262923n?1∴9T2n=1-2n.

232又Qn=1-

3n?1, 2(2n?1)當(dāng)n=1時(shí),22 n= 4,(2n+1)2=9,∴9T2 n<Q n; 當(dāng)n=2時(shí),22 n=16,(2n+1)2=25,∴9T2 n<Qn;

013n2?Cn?Cn???Cn)?(2n?1)2, 當(dāng)n≥3時(shí),22n?[(1?1)n]2?(Cn∴9T2 n>Q n.

0(x?0)?(x)?例26 已知函數(shù)f?n[x?(n?1)]?f(n?1)?列{an}滿足a ?f(n)(n?N*)n (I)求數(shù)列{an}的通項(xiàng)公式;

,數(shù)

(n?1?x?n,n?N*) (II)設(shè)x軸、直線x與函數(shù)y?f(x)的圖象所圍成的封閉圖形的面積?a為S,求S; ()(aa?0)(nS)?(n?1)(n?N*) (III)在集合M,且1中,是否存在正?{N|NkkZ?2,?000??k1500}整數(shù)N,使得不等式a對(duì)一切n恒成立?若存在,則?N?1005??S(n)S(n?1)n這樣的正整數(shù)N共有多少個(gè)?并求出滿足條件的最小的正整數(shù)N;若不存在,請(qǐng)

說明理由。

im(b??b?b) (IV)請(qǐng)構(gòu)造一個(gè)與{an}有關(guān)的數(shù)列{bn},使得l存在,12?nn??并求出這個(gè)極限值。

解:(I)? ? n?N*f(n)?n[n?()nf?1]?()n?1?n?f()n?139

? f(n)?f(n??1)n

?f(1)?f(0)?1 f(2)?f(1)?2

f(3)?f(2)?3 ……

f ()n?f(n??1)n 將這n個(gè)式子相加,得

n(n?1) f (nf)?(01)??2?3???n?2?f(0)?0 n(n?1)

?f(n)?2n(n?1) ? a?(n?N*)n2

(II)S為一直角梯形(n?時(shí)為直角三角形)的面積,該梯()n?S(n?1)1形的兩底邊的長(zhǎng)分別為fn,高為1 (?1),fn()?af(n?1)?f(n)an?1n ? S(n)?S(n?1)??1?221n(n?1)n(n?1)n2?]? ?[

2222

(III)設(shè)滿足條件的正整數(shù)N存在,則

n(n?1)n2n?1005???1005?n?2010

222 又M?{2000,2002,?,2008,2010,2012,?,2998} ?均滿足條件 N?2010,2012,……,2998 它們構(gòu)成首項(xiàng)為2010,公差為2的等差數(shù)列。

設(shè)共有m個(gè)滿足條件的正整數(shù)N,則2,解得m 010?2(m?1)?2998?495 ?中滿足條件的正整數(shù)N存在,共有495個(gè),N M2010min? (IV)設(shè)bn?1211,即b ??2(?)nann(n?1)nn?1

40

11111111 則b1?b2???bn?2[(1?)?(?)?(?)???(?)]?2(1?)

22334nn?1n?11顯然,其極限存在,并且l im(bb????b)?lim[2?]?212nn??n??n?1例27 函數(shù) (Ⅰ)求證:

;

的定義域?yàn)镽,且

(Ⅱ)若

(Ⅲ)在(Ⅱ)的條件下記

上的最小值為,試求f(x)的解析式;

試比較

的大小并證明你的結(jié)論.

解:(Ⅰ)∵f(x)定義域?yàn)镽,

(Ⅱ)由(Ⅰ)知

f(x)在[0,1]上為增函數(shù),

(Ⅲ)

例28 已知函數(shù)f(x)?kx?m,當(dāng)x?[a1,b1]時(shí),f(x)的值域?yàn)閇a2,b2],當(dāng)

x?[a2,b2]

41

時(shí),f(x)的值域?yàn)閇a3,b3],依次類推,一般地,當(dāng)x?[an?1,bn?1]時(shí),f(x)的

值域?yàn)?p>[an,bn],其中k、m為常數(shù),且a1?0,b1?1.

(1)若k=1,求數(shù)列{an},{bn}的通項(xiàng)公式;

(2)項(xiàng)m=2,問是否存在常數(shù)k?0,使得數(shù)列{bn}滿足limbn?4?若存在,

n??求k的值;若不存在,請(qǐng)說明理由;

(3)若k?0,設(shè)數(shù)列{an},{bn}的前n項(xiàng)和分別為Sn,Tn,求[來源:學(xué)&科&網(wǎng)] (T1?T2???T2010)?(S1?S2???S2010)。

解:(1)因?yàn)閒(x)?x?m,當(dāng)x?[an?1,bn?1]時(shí),f(x)為單調(diào)增函數(shù), 所以其值域?yàn)閇an?1?m,bn?1?m]

于是an?an?1?m,bn?bn?1?m(n?N*,n?2) 又a1?0,b1?1,所以an?(n?1)m,bn?1?(n?1)m. (2)因?yàn)?p>f(x)?x?mf(x)?kx?m(k?0),當(dāng)x?[an?1,bn?1]時(shí),f(x)為單調(diào)增函數(shù)

所以f(x)的值域?yàn)閇kan?1?m,kbn?1?m],因m?2,則bn?kbn?1?2(n?2)……8分

法一:假設(shè)存在常數(shù)k?0,使得數(shù)列

{bn}滿足limbn?4,則limbn?klimbn?1?2,得4?4k?2,則k?n??n??n??1符合。 2法二:假設(shè)存在常數(shù)k>0,使得數(shù)列{bn}滿足limbn?4.

n??當(dāng)k=1不符合?!?分

當(dāng)k?1時(shí),bn?kbn?1?2(n?2)?bn?22?k(bn?1?)(n?2),[來k?1k?1源:Z+xx+k.Com]

22則bn?(1? )kn?1?,

k?1k?121當(dāng)0?k?1時(shí),limbn??4,得k?符合.

n??1?k2 (3)因?yàn)閗?0,當(dāng)x?[an?1,bn?1]時(shí),f(x)為單調(diào)減函數(shù),

所以f(x)的值域?yàn)閇kbn?1?m,kan?1?m]

42

于是an?kbn?1?m,bn?kan?1?m(n?N*,n?2) 則bn?an??k(bn?1?an?1) 又b1?a1?1

?i,(k??1)?則有Ti?Si??1?(?k)i

,(k?0,k??1)??1?k

進(jìn)而有

?2021055,(k??1)?(T1?T2???T2010)?(S1?S2???S2010)??2010?2011k?k2011

,(k?0,k??1)?(1?k)2?

11例29 已知函數(shù)f(x)?x2?x?,f?(x)為函數(shù)f(x)的導(dǎo)函數(shù).

24(Ⅰ)若數(shù)列{an}滿足:a1?1,an?1?f?(an)?f?(n)(n?N?),求數(shù)列{an} …………18分

的通項(xiàng)an;

(Ⅱ)若數(shù)列{bn}滿足:b1?b,bn?1?2f(bn)(n?N?).

ⅰ.當(dāng)b?1時(shí),數(shù)列{bn}是否為等差數(shù)列?若是,請(qǐng)求出數(shù)列{bn}的通2項(xiàng)bn;若不是,請(qǐng)說明理由;

n112ⅱ.當(dāng)?b?1時(shí), 求證:??.

22b?1i?1bi

1, 211?an?1?(2an?)?(2n?)?2an?2n?1,

22解:(Ⅰ)f?(x)?2x?即an?1?2(n?1)?1?2(an?2n?1).

a1?1, ?數(shù)列{an?2n?1}是首項(xiàng)為4,公比為2的等比數(shù)列.

?an?2n?1?4?2n?1,即an?2n?1?2n?1.

43

1(Ⅱ)(?。?bn?1?2f(bn)?2bn2?bn?,

21?bn?1?bn?2(bn?)2.

211?當(dāng)b1?時(shí),b2?.

221假設(shè)bk?,則bk?1?bk.

2由數(shù)學(xué)歸納法,得出數(shù)列{bn}為常數(shù)數(shù)列,是等差數(shù)列,其通項(xiàng)為bn?11(ⅱ)bn?1?2bn2?bn?, ?bn?1?bn?2(bn?)2.

2211?當(dāng)?b1?1時(shí),b2?b1?.

2211假設(shè)bk?,則 bk?1?bk?.

221). 由數(shù)學(xué)歸納法,得出數(shù)列bn?(n?1,2,3,211又bn?1??2bn(bn?),

221. 2?111, ??11bn?1?2bn?2bn111. ??1bnbn?1b?n?122n即

n11111. ?)??????(1111bi?1?2b1?2bn?1?2i?1bii?1bi?2bn?1???i?1n1, 2112??. bib1?12b?12nfk'?1(x)例30 已知f0(x)?x,fk(x)?,其中k?n(n,k?N?),

fk?1(1)01knf0(x2)?Cnf1(x2)?...?Cnfk(x2)?...?Cnfn(x2),x???1,1?. 設(shè)F(x)?Cn(I) 寫出fk(1);

(II) 證明:對(duì)任意的x1,x2???1,1?,恒有F(x1)?F(x2)?2n?1(n?2)?n?1. 【解析】(I)由已知推得fk(x)?(n?k?1)xn?k,從而有fk(1)?n?k?1

44

(II) 證法1:當(dāng)?1?x?1時(shí),

12(n?1)22(n?2)k2(n?k)n?12F(x)?x2n?nCnx?(n?1)Cnx...?(n?k?1)Cnx?...?2Cnx?1

當(dāng)x>0時(shí), F?(x)?0,所以F(x)在[0,1]上為增函數(shù) 因函數(shù)F(x)為偶函數(shù)所以F(x)在[-1,0]上為減函數(shù) 所以對(duì)任意的x1,x2???1,1?F(x1)?F(x2)?F(1)?F(0)

012kn?1F(1)?F(0)?Cn?nCn?(n?1)Cn...?(n?k?1)Cn?...?2Cn?nCn?1n?(n?1)Cn?2n...?(n?k?1)Cn?kn?...?2C?C1n0n

n?kn?kn?k(n?k?1)Cn?(n?k)Cn?Cn?nCkn?1?C(k?1,2,3knn?1)

12k?112n?10F(1)?F(0)?n(Cn?1?Cn?1...?Cn?1)?(Cn?Cn...?Cn)?Cn?n(2n?1?1)?2?1?2(n?2)?n?1nn?1

因此結(jié)論成立.

證法2: 當(dāng)?1?x?1時(shí),

12(n?1)22(n?2)k2(n?k)n?12F(x)?x2n?nCnx?(n?1)Cnx...?(n?k?1)Cnx?...?2Cnx?1

當(dāng)x>0時(shí), F?(x)?0,所以F(x)在[0,1]上為增函數(shù) 因函數(shù)F(x)為偶函數(shù)所以F(x)在[-1,0]上為減函數(shù) 所以對(duì)任意的x1,x2???1,1?F(x1)?F(x2)?F(1)?F(0)

012kn?1F(1)?F(0)?Cn?nCn?(n?1)Cn...?(n?k?1)Cn?...?2Cn 12k?1n?10?3Cn?...?kCn?...?nCn?Cn又因F(1)?F(0)?2Cn 12k?1n?10?Cn?...?Cn?...?Cn]?2Cn所以2[F(1)?F(0)]?(n?2)[Cn

F(1)?F(0)?n?212k?1n?10[Cn?Cn?...?Cn?...?Cn]?Cn2n?2n?(2?2)?1?2n?1(n?2)?n?12

因此結(jié)論成立.

證法3: 當(dāng)?1?x?1時(shí),

12(n?1)22(n?2)k2(n?k)n?12F(x)?x2n?nCnx?(n?1)Cnx...?(n?k?1)Cnx?...?2Cnx?1

45

當(dāng)x>0時(shí), F?(x)?0,所以F(x)在[0,1]上為增函數(shù) 因函數(shù)F(x)為偶函數(shù)所以F(x)在[-1,0]上為減函數(shù) 所以對(duì)任意的x1,x2???1,1?F(x1)?F(x2)?F(1)?F(0)

012kn?1F(1)?F(0)?Cn?nCn?(n?1)Cn...?(n?k?1)Cn?...?2Cn

1n?12n?2kn?kn?1x[(1?x)n?xn]?x[Cnx?Cnx?...Cnx?..?Cnx?1]?Cx?Cx1nn2nn?1?...Cxknn?k?1?..?Cn?12nx?x

對(duì)上式兩邊求導(dǎo)得

1n?12n?2kn?kn?1(1?x)n?xn?nx(1?x)n?1?nxn?nCnx?(n?1)Cnx?...(n?k?1)Cnx?..?2Cnx?1F(x)?(1?x2)n?nx2(1?x2)n?1?nx2n

?F(1)?F(0)?2n?n2n?1?n?1?(n?2)2n?1?n?1

因此結(jié)論成立.

五、數(shù)列與不等式交匯的綜合題

12例31 已知數(shù)列{an}滿足.an?an?1?2an?1(n?N*)

n(1)若數(shù)列{an}是以常數(shù)a1首項(xiàng),公差也為a1的等差數(shù)列,求a1的值; (2)若a0?(3)若a0?1111??2對(duì)任意n?N?都成立; ,求證:

an?1ann21n?1?an?n對(duì)任意n?N?都成立. ,求證:

2n?2112解 (1)由an?an?1?2a2n?1(n?N?)得:a1?2?a1?(n?2)a1?

nnn?1即a1?(2)2a12,求得a1?0

n1(2)由an?an?1?0知an?an?1?2anan?1,

n兩邊同除以anan?1,得

111??2 an?1ann(3)

111111??(?)?(?)?a0ana0a1a1a2?(11?) an?1an46

?1?11?2?223?111?1??? 21?22?3n?(11?) (n?1)n?1

(n?1)n111111?1?(?)?(?)?(?)?233445?2?11,將a0?代入,得an?n; ㈠ n21n?1an?1?n?1 ? an?an?1?2a2n?1?an?1?2an?1

nnn21n2an?1?2an an?an?1?2an?1?2an

n?n?1nn?n?111111??2??an?1ann?n?1nn?1

11?) an?1an111111??(?)?(?)?a1ana1a2a2a3?(1111?(?)?(?)?2334?31111 而a1?, ?(?) ??42n?1nn?1151n?2n?1??? ?an? ㈡ an6n?1n?1n?2 由㈠㈡知,命題成立.

Sn?2(n?1)。 n(1)求證:數(shù)列{an}為等差數(shù)列,并分別求出an、Sn的表達(dá)式;

例32 設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,a1?1,an?111}的前n項(xiàng)和為Tn,求證:?Tn?;

anan?1SSS(3)是否存在自然數(shù)n,使得S1?2?3???n?(n?1)2?2009?若存在,

23n求出n的值;若不存在,請(qǐng)說明理由。

(2)設(shè)數(shù)列{47

又易知T1n單調(diào)遞增,故Tn?T1?5,得15?T1n?4 (3)由SSnn?nan?2n(n?1)得

n?2n?1 SS21??S33???Snn?(n?1)2?1?3?5???(2n?1)?(n?1)22 =2n?1……13分

由2n?1?2009,得n=1005,即存在滿足條件的自然數(shù)n=1005.

例33 已知數(shù)列?a12S2nn?中,a1?3,當(dāng)n?2時(shí),其前n項(xiàng)和Sn滿足an?2S,n?1(1) 求Sn的表達(dá)式及l(fā)imann??S2的值; n(2) 求數(shù)列?an?的通項(xiàng)公式; (3) 設(shè)bn?1(2n?1)3?1n?N(2n?1)3,求證:當(dāng)且n?2時(shí),an?bn。

解:(1)a2S2n11n?Sn?Sn?1?2S1?Sn?1?Sn?2SnSn?1?S??2(n?2)

n?nSn?1所以??1??S?是等差數(shù)列。則S1n?n?2n?1。

limann??S2?lim2?2??2。 nn??2Sn?12limn??Sn?148

(2)當(dāng)n?2時(shí),an?Sn?Sn?1?11?2, ??22n?12n?14n?1?1?n?1???3綜上,an??。

2?n?2?2???1?4n(3)令a?111,b?,當(dāng)n?2時(shí),有0?b?a? 32n?12n?1等價(jià)于求證

1?2n?11?2n?1?3?1?2n?11?2n?1?3。

當(dāng)n?2時(shí),0?111?,令f?x??x2?x3,0?x?, 2n?1333313f??x??2x?3x2?2x(1?x)?2x(1??)?2x(1?)?0,

2223則f?x?在(0,1]遞增。 3又0?111??, 2n?12n?1311)?g(3),即an?bn 2n?12n?1所以g(3

例34 已知數(shù)列?an?各項(xiàng)均不為0,其前n項(xiàng)和為Sn,且對(duì)任意n?N*都有

21?C1na1?Cna2?(1?p)Sn?p?pan(p為大于1的常數(shù)),記f(n)?2nSnn?Cnan.

(1) 求an; (2) 試比較f(n?1)與

p?1f(n)的大?。╪?N*); 2p(3) 求證:(2n?1)f(n)(n?N*).

解:(1) ∵(1?p)Sn?p?pan,

∴(1?p)Sn?1?p?pan?1.

②-①,得

f(1)?f(2)??f(2n?1)2n?1p?1??p?1???1????p?1?2p?????,

① ②

(1?p)an?1??pan?1?pan,

即an?1?pan.

49

在①中令n?1,可得a1?p.

∴?an?是首項(xiàng)為a1?p,公比為p的等比數(shù)列,an?pn. (2) 由(1)可得

p(1?pn)p(pn?1). Sn??1?pp?121?C1na1?Cna2?n22?Cnan?1?pC1n?pCn?n?Cnan

nnn?Cnnp?(1?p)?(p?1).

21?C1na1?Cna2?∴f(n)?2nSnp?1(p?1)n??, p2n(pn?1)

p?1(p?1)n?1?. f(n?1)?p2n?1(pn?1?1)p?1(p?1)n?1p?1?f(n)?而,且p?1, p2n?1(pn?1?p)2p∴pn?1?1?pn?1?p?0,p?1?0. ∴f(n?1)?

p?1f(n),(n?N*). 2p

2?6an?6(n?N?). 例35 數(shù)列?an?:滿足a1?2,an?1?an(Ⅰ) 設(shè)Cn?log5(an?3),求證?Cn?是等比數(shù)列; (Ⅱ) 求數(shù)列?an?的通項(xiàng)公式; (Ⅲ)設(shè)bn?5111,數(shù)列?bn?的前n項(xiàng)和為Tn,求證: ??Tn??. ?21an?6an?6an22解:(Ⅰ)由an?1?an?6an?6,得an?1?3?(an?3).

?log5(an?1?3)?2log5(an?3),即 Cn?1?2Cn,

??Cn?是以2為公比的等比數(shù)列 (Ⅱ) 又C1?log55?1

?Cn?2n?1即 log5(an?3)?2n?1,

?an?3?52. 故an?52?3. (Ⅲ)bn?11111111?2??,?Tn?????2n. an?6an?6anan?6an?1?6a1?6an?1?5?9n?1n?1又0?152?9n?1151?,???T??.n21 5?91650

例36 給定正整數(shù)n和正數(shù)b,對(duì)于滿足條件a1?an?1?b的所有無窮等差數(shù)列

2?an?,試求y?an?1?an?2???a2n?1的最大值,并求出y取最大值時(shí)?an?的首項(xiàng)

和公差.

解:設(shè)?an?公差為d,則an?1?a1?nd,nd?an?1?a1.

y?an?1?an?2???a2n?1?an?1?(an?1?d)???(an?1?nd) ?(n?1)an?1?(1?2???n)d?(n?1)an?1?n(n?1)d 2a?a1nd)?(n?1)(an?1?n?1) 22?(n?1)(an?1??n?1(3an?1?a1). 222又a1?an?1?b,??a1??b?an?1.

39?4b9?4b2∴3an?1?a1??an?1?3an?1?b??(an?1?)2?,當(dāng)且僅當(dāng)?2443an?1?時(shí),等號(hào)成立.

2n?1(n?1)(9?4b)∴y?. (3an?1?a1)?24b?3(n?1)(9?4b)當(dāng)數(shù)列?an?首項(xiàng)a1?b?,公差d??時(shí),y?,

44n8(n?1)(9?4b)∴y的最大值為.

8

例37 已知數(shù)列{an}滿足a1=5,a2=5,an+1=an+6an-(n∈N*),若數(shù)列{an?1??an}1n≥2,是等比數(shù)列.

(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;

4; (Ⅱ)求證:當(dāng)k為奇數(shù)時(shí),1?1?k?1akak?13 (Ⅲ)求證:1?1???1?1(n?N*). a1a2an251

得?=2或?=-3

當(dāng)?=2時(shí),可得{an?1?2an}為首項(xiàng)是 a2?2a1?15,公比為3的等比數(shù)列, 則an?1?2an?15?3n?1 ①

當(dāng)?=-3時(shí),{an?1?3an}為首項(xiàng)是a2?3a1??10,公比為-2的等比數(shù)列, ∴an?1?3an??10(?2)n?1 ② ①-②得, an?3n?(?2)n.

(注:也可由①利用待定系數(shù)或同除2n+1得通項(xiàng)公式) (Ⅱ)當(dāng)k為奇數(shù)時(shí),

114114??k?1?k?? akak?133?2k3k?1?2k?13k?134k?[8?7?()k]?7?6?8?42?k?1??0 kkk?1k?1k?1kkk?1k?13?(3?2)(3?2)3(3?2)(3?2)kk∴

114??k?1 akak?1311411??k?1?k?k?1 akak?1333(Ⅲ)由(Ⅱ)知k為奇數(shù)時(shí),

①當(dāng)n為偶數(shù)時(shí),

111111111??????2???n?(1?n)? a1a2an3322331111111?????????? a1a2ana1a2anan?1②當(dāng)n為奇數(shù)時(shí),

111111=?2???n?1?(1?n?1)? 332233

例 38 如圖,把正?ABC分成有限個(gè)全等的小正三角形,且在每個(gè)小三角形的頂

52

點(diǎn)上都放置一個(gè)非零實(shí)數(shù),使得任意兩個(gè)相鄰的小三角形組成的菱形的兩組相對(duì)頂點(diǎn)上實(shí)數(shù)的乘積相等.設(shè)點(diǎn)A為第一行,...,BC為第n行,記點(diǎn)A上的數(shù)為

a11,?,第i行中第j個(gè)數(shù)為aij(1?j?i).若a11?1,a21?11,a22?. 24(1)求a31、a32、a33;

(2)試求第n行中第m個(gè)數(shù)anm的表達(dá)式(用n、m表示);

(3)記Sn?an1?an2???anm(n?N*),求證:

1114n?1n??????(n?N*)

S1S2Sn3.解:(1)a31?(2)anm111 ,a32?,a33?4816n?m?2?1?????2?12n?2

?122n?2(3)Sn?

當(dāng)n?2時(shí),Sn?當(dāng)n?2時(shí),

1?又Sn12n?2?122n?2?12n?2?1,所以

1111?1,則?????n SnS1S2Sn14n?1?n?4n?1 2?112n?2?122n?21114n?1所以? ????S1S2Sn3an?11例39 已知a?0,且a?1,數(shù)列{an}的前n項(xiàng)和為Sn,它滿足條件?1?.

Sna數(shù)列{bn}中,bn?an·lgan.

(1)求數(shù)列{bn}的前n項(xiàng)和Tn;

(2)若對(duì)一切n?N*都有bn?bn?1,求a的取值范圍.

53

解:(1)

an?11a(an?1) ?1? ,∴Sn?Snaa?1a(a1?1)當(dāng)n?1時(shí),a1?S1??a.

a?1a(an?1)a(an?1?1)n*當(dāng)n≥2時(shí),an?Sn?Sn?1=??an,∴ an?a(n?N)

a?1a?1此時(shí)bn?an·lgan?an·lgan=n·anlga, ∴Tn?b1?b2?……bn=lga(a?2a2?3a3?……+nan). 設(shè)un?a?2a2?3a3?……+nan, ∴(1?a)un?a?a?a?……a?na23nn?1a(an?1)??nan?1,

a?1nan?1a(an?1)∴un??. 2a?1(a?1)nan?1a(an?1)∴Tn?lga·[?]. ……6分

a?1(a?1)2(2)由bn?bn?1?nanlga?(n?1)an?1lga可得

①當(dāng)a?1時(shí),由lga?0,可得a?n n?1nn對(duì)一切n?N*都成立, ?1(n?N*),a?1, ∴a?n?1n?1n, n?1∴此時(shí)的解為a?1.

②當(dāng)0?a?1時(shí),由lga?0 可得n?(n?1)a,a?n1n≥(n?N*),0?a?1,∴0?a?對(duì)一切n?N*都成立, n?12n?11∴此時(shí)的解為0?a?.

2由①,②可知

對(duì)一切n?N*,都有bn?bn?1的a的取值范圍是0?a?1或a?1. 2例40 已知正項(xiàng)數(shù)列?an?中,a1?6,點(diǎn)Anan,an?1在拋物線y2?x?1上;數(shù)列?bn?中,點(diǎn)Bn?n,bn?在過點(diǎn)?0,1?,以方向向量為?1,2?的直線上。

??(Ⅰ)求數(shù)列?an?,?bn?的通項(xiàng)公式;

??an, ?n為奇數(shù)?(Ⅱ)若f?n???,問是否存在k?N,使f?k?27??4f?k?成??bn, ?n為偶數(shù)?立,若存在,求出k值;若不存在,說明理由;

(Ⅲ)對(duì)任意正整數(shù)n,不等式

an?1?an?0成立,

???n?1?1??b??1?1???1?1??n?2?a1??b2??bn?求正數(shù)a的取值范圍。

解:(Ⅰ)將點(diǎn)A??2nan,an?1代入y?x?1中得

an?1?an?1 ? an?1?an?d?1? an?a1??n?1??1?n?5

直線l:y?2x?1, ? bn?2n?1(Ⅱ)f?n????n?5, ??n為奇數(shù)???2n?1, ?n為偶數(shù)?

當(dāng)k為偶數(shù)時(shí),k?27為奇數(shù), f?k?27??4f?k?? k?27?5?4?2k?1?, ? k?4當(dāng)k為奇數(shù)時(shí),k?27為偶數(shù),

? 2?k?27??1?4?k?5?, ? k?352?舍去?綜上,存在唯一的k?4符合條件。(

)an?1??1?1????1???ann?2?a?0n?b1???1?1??b2??1?b?n?55

即a??1?1????bn??11??1??1?記f?n??1?1?1???????2n?3?b1??b2??bn??1??1?1?1?????2n?3?b1??b2?1?1??1?1?1?????2n?5?b1??b2?1?1??1?1?1?????bbnn?1????? f?n?1??? ?f?n?1?f?n?2?2n?3?1?2n?32n?42n?4??1?????2n?5?bn?1?2n?52n?32n?5?2n?3 ?14n2?16n?1n?16n?15? f?n?1??f?n?, 即f?n?遞增,? f?n?min?f?1??? 0?a?45151445?,5315?例41 已知等比數(shù)列?an?的前n項(xiàng)和為Sn?2?3n?k(k?R,n?N?) (Ⅰ)求數(shù)列?an?的通項(xiàng)公式;

(Ⅱ)設(shè)數(shù)列?bn?滿足an?4(5?k)anbn,試比較3?16Tn Tn為數(shù)列?bn? 的前n項(xiàng)和,與 4(n?1)bn?1的大小,并證明你的結(jié)論.

解:(Ⅰ)由Sn?2?3n?k(k?R,n?N?)得:n?2時(shí),

an?Sn?Sn?1?4?3n?1

?an?是等比數(shù)列,?a1?S1?6?k?4?k??2,得 an?4?3n?1(n?N?)

(Ⅱ)由an?4(5?k)anbn和an?4?3n?1得bn??Tn?b1?b2?b3?3Tn?bn?1?bn?12??24?34?3n?2n?1??4?3n?34?3n?2n?1 4?3n?1?n?2n?1?4?3n?24?3n?1(2)(1)123???44?34?32

11111n?1?????? 2n?3n?2n?144?34?34?34?34?311111n?132n?1?Tn?????????……10分

88?38?328?3n?38?3n?28?3n?11616?3n?1n(n?1)2n?1n(n?1)?3(2n?1) 4(n?1)bn?1?(3?16Tn)??n?1?nn333?(2)?(1):2Tn?56

n(n?1)?3(2n?1)?n2?5n?3

?當(dāng)n?5?375?37或n?所以當(dāng)n?5(n?N?)時(shí)?0時(shí)有n(n?1)?3(2n?1),22有3?16Tn?4(n?1)bn?1 那么同理可得:當(dāng)

5?375?37時(shí)有n(n?1)?3(2n?1),所以當(dāng)?n?221?n?5(n?N?)時(shí)有3?16Tn?4(n?1)bn?1

綜上:當(dāng)n?5(n?N?)時(shí)有3?16Tn?4(n?1)bn?1;當(dāng)1?n?5(n?N?)時(shí)有

3?16Tn?4(n?1)bn?1

例42 已知數(shù)列?an?中,a1?3,a2?5,其前n項(xiàng)和Sn滿足

Sn?Sn?2?2Sn?1?2n?1?n≥3?.令bn?1.an?an?1

(Ⅰ)求數(shù)列?an?的通項(xiàng)公式;

(Ⅱ)若f?x??2x?1,求證:Tn?b1f?1??b2f?2??(Ⅲ)令Tn?1b1a?b2a2?b3a3??2?bnf?n??1(n≥1); 6,求同時(shí)滿足下列兩個(gè)條件的所?bnan?(a?0)

1??1??有a的值:①對(duì)于任意正整數(shù)n,都有Tn?;②對(duì)于任意的m??0,?,均存在

66n0?N?,使得n≥n0時(shí),Tn?m.

解:(Ⅰ)由題意知Sn?Sn?1?Sn?1?Sn?2?2n?1?n≥3?即an?an?1?2n?1?n≥3? ∴an??an?an?1???an?1?an?2???2n?1?2n?2???a3?a2??a2

?22?2?1?2?2n?1?n≥3?

?22?5?2n?1?2n?2?檢驗(yàn)知n?1、2時(shí),結(jié)論也成立,故an?2n?1.

n?1n11?2?1???2?1?1?11?n?1?2????(Ⅱ)由于bnf?n??n?? nn?1n?1nn?1222?12?1??2?1??2?1??2?1??2?1??故

57

Tn?b1f?1??b2f?2???bnf?n??1??11??11???????2?23?2?1?21?21?21?2?????1???1??n?n?1?? 2?12?1???1?11?111???n?1????. 2?1?22?1?21?26(Ⅲ)(?。┊?dāng)a?2時(shí),由(Ⅱ)知:Tn?,即條件①滿足;又0?m?1?11?3?3161, 6?n?1??m?2n?1??1?n?log2??1??1?0. ∴Tn?m??2?1?22?1?1?6m1?6m???取n0等于不超過log2??3??1?的最大整數(shù),則當(dāng)n≥n0時(shí),Tn?m.…9′

?1?6m?naan?a?a(ⅱ)當(dāng)a?2時(shí),∵n≥1,n???≥,∴an≥?2n,∴

22?2?2aabn?an≥bn??2n??bn?2n.

22a1?11??1i?an?n?1?. ∴Tn???bia?≥??bi?2i?1????22?1?22?1??2i?1i?1?2?由(?。┲嬖趎0?N?,當(dāng)n≥n0時(shí),?, ??2?1?22n?1?1?3a1?11?1n?故存在n0?N?,當(dāng)n≥n0時(shí),Tn???????,不滿足條件. 22?1?22n?1?1?23a6a1?11?a11aan?a?a(ⅲ)當(dāng)0?a?2時(shí),∵n≥1,n???≤,∴an≤?2n,∴

22?2?2naabn?an≤bn??2n??bn?2n.

22n1aa1?11?i?n?1?. ∴Tn???bia?≤??bi2i?1????22?1?22?1?i?12i?12n取m?a?1???0,?,若存在n0?N?,當(dāng)n≥n0時(shí),Tn?m,則12?6?a1?11?a???n?1??. 22?1?22?1?12∴

111當(dāng)n≥n0時(shí),?n?1?矛盾. 故不存在n0?N?,Tn?m.不滿足條件.

1?22?13綜上所述:只有a?2時(shí)滿足條件,故a?2.

?n?1??2an?n?n?N?. 1例43 已知數(shù)列?an?滿足a1?,an?1???2an?4n58

(1)求a2,a3,a4;

?a??n?(2)已知存在實(shí)數(shù)?,使?n?為公差為?1的等差數(shù)列,求?的值;

?an?n?(3)記bn?13n?22?n?N?,數(shù)列?b?的前n項(xiàng)和為S?nn,求證:

an?2Sn??

23?1. 12解:(1)a1?1,由數(shù)列?an?的遞推公式得 238a2?0,a3??,a4??

45an?1??(n?1)an??n?an?1?n?1an?n

(2)

(n?1)(2an?n)??(n?1)an?4na??n?n=

(n?1)(2an?n)an?n?n?1an?4n=

(??2)an?(4??1)nan??n??1?=

33an?3nan?n?a??n???1為公差是的等差數(shù)列. ?數(shù)列?n?3?an?n?由題意,令

??13??1,得???2

(3)由(2)知

an??na1?2??(n?1)(?1)??n, an?na1?1?n2?2n所以an?

n?1此時(shí)bn?1?n?3= n?22n?2?(n?1)?2(n?2)(3)n(n?2)32?n?3111?], =[2(3)n?2(n?2)(3)nn59

11111?????Sn?[422(3)3?33(3)?4(3)?2

?11?????(3)5?5(3)3?3

11111[???] =n?2n236 (3)?(n?2)(3)?n?11?]

(3)n?1?(n?1)(3)n?2?(n?2)11123?1>(? ?)??21236

例44 已知數(shù)列{an},a1?a2?2,an?1?an?2an?1(n?2)

(Ⅰ)求數(shù)列{an}的通項(xiàng)公式an (Ⅱ)當(dāng)n?2時(shí),求證:

111??...??3 a1a2an(Ⅲ)若函數(shù)f(x)滿足:f(1)?a1,f(n?1)?f2(n)?f(n).(n?N*)

求證:?k?1n11?.

f(k)?12解: (1) an?1?an?2an?1,兩邊加an得: an?1?an?2(an?an?1)(n?2),

?{an?1?an} 是以2為公比, a1?a2?4為首項(xiàng)的等比數(shù)列.

?an?1?an?42n?1?22n……①

由an?1?an?2an?1兩邊減2an得: an?1?2an??(an?2an?1)(n?2) ?{an?1?2an} 是以?1

為公比, a2?2a1??2為首項(xiàng)的等比數(shù)列. ?an?1?2an??2(?1)n?1?2(?1)n

2①-②得: 3an?2[2n?(?1)n] 所以,所求通項(xiàng)為an?[2n?(?1)n]…………5分

360

(2) 當(dāng)n為偶數(shù)時(shí),

?1131132n?1?2n??[?]?an?1an22n?1?12n?122n?12n?2n?2n?1?132?232?2311??(?)(n?2)22n?12n?2n?1?122n?12n22n?12nn?1nn?1n

1n1113111312???...??(1??2?...?n)??3?3n?3

a1a2an222221?1221?21當(dāng)n為奇數(shù)時(shí),an?[2n?(?1)n]?0,?an?1?0,?0,又n?1為偶數(shù)

3an?1?由(1)知, (3)證明:

1111111??...????...???3 a1a2ana1a2anan?1f(n?1)?f(n)?f2(n)?0

?f(n?1)?f(n),?f(n?1)?f(n)?f(n?1)?????f(1)?2?0

11111?2???

f(n?1)f(n)?f(n)f(n)[f(n)?1]f(n)f(n)?1111??

f(n)?1f(n)f(n?1)n???k?11111111?[?]?[?]?????[?]f(k)?1f(1)f(2)f(2)f(3)f(n)f(n?1)1111????.f(1)f(n?1)f(1)2

?x?0?例45 設(shè)不等式組?y?0所表示的平面區(qū)域?yàn)镈n,記Dn內(nèi)的格點(diǎn)(格點(diǎn)

?y??nx?3n?即橫坐標(biāo)和縱坐標(biāo)均為整數(shù)的點(diǎn))的個(gè)數(shù)為f(n)(n∈N*). (1)求f(1)、f(2)的值及f(n)的表達(dá)式; (2)設(shè)bn=2nf(n),Sn為{bn}的前n項(xiàng)和,求Sn; (3)記Tn?的取值范圍.

解:(1)f(1)=3, f(2)=6

61

f(n)f(n?1),若對(duì)于一切正整數(shù)n,總有Tn≤m成立,求實(shí)數(shù)m

2n 當(dāng)x=1時(shí),y=2n,可取格點(diǎn)2n個(gè);當(dāng)x=2時(shí),y=n,可取格點(diǎn)n個(gè) ∴f(n)=3n (2)由題意知:bn=3n·2n

Sn=3·21+6·22+9·23+…+3(n-1)·2n-1+3n·2n ∴2Sn=3·22+6·23+…+3(n-1)·2n+3n·2n+1

∴-Sn=3·21+3·22+3·23+…3·2n-3n·2n+1 =3(2+22+…+2n)-3n·2n+1

2?2n?1 =3·?3n2n?1

1?2 =3(2n+1-2)-3nn+1 ∴-Sn=(3-3n)2n+1-6 Sn=6+(3n-3)2n+1

(3)Tn?f(n)f(n?1)3n(3n?3) ?nn22(3n?3)(3n?6)n?1Tn?1n?22??3n(3n?3)Tn2n2nn?2當(dāng)n?1時(shí),?1

2nn?2當(dāng)n?2時(shí),?12nn?2當(dāng)n?3時(shí),?12n ∴T1T4>…>Tn 故Tn的最大值是T2=T3= ∴m≥

27。 227 2例46 (2009陜西卷理) 已知數(shù)列?xn}滿足, x1=11xn+1=,n?N*. 2’1?xn???猜想數(shù)列{xn}的單調(diào)性,并證明你的結(jié)論;

12(Ⅱ)證明:|xn?1-xn|≤()n?1。

6562

112513得x2??x4?,x4? 證明(1)由x1?及xn+1?21?xn3821由x2?x4?x6猜想:數(shù)列?x2n?是遞減數(shù)列 下面用數(shù)學(xué)歸納法證明:

(1)當(dāng)n=1時(shí),已證命題成立 (2)假設(shè)當(dāng)n=k時(shí)命題成立,即x2k?x2k?2 易知x2k?0,那么x2k?2?x2k?4?x2k?3?x2k?111??

1?x2k?11?x2k?3(1?x2k?1)(1?x2k?3)=

x2k?x2k?2?0

(1?x2k)(1?x2k?1)(1?x2k?2)(1?x2k?3)即x2(k?1)?x2(k?1)?2

也就是說,當(dāng)n=k+1時(shí)命題也成立,結(jié)合(1)和(2)知,命題成立 (2)當(dāng)n=1時(shí),xn?1?xn?x2?x1?1,結(jié)論成立 611?

1?xn?12當(dāng)n?2時(shí),易知0?xn?1?1,?1?xn?1?2,xn??(1?xn)(1?xn?1)?(1?15)(1?xn?1)?2?xn?1? 1?xn?12xn?xn?111?xn?1?xn???

1?xn1?xn?1(1?xn)(1?xn?1)222xn?xn?1?()xn?1?xn?2?55

12n-1?()65?2n-1?()x2?x15

例47 已知函數(shù)F?x??3x?2?1?,?x??. 2x?1?2??1??2??2008??F?...?F(I)求F??????; 200920092009??????(II)已知數(shù)列?an?滿足a1?2,an?1?F?an?,求數(shù)列?an?的通項(xiàng)公式; (Ⅲ) 求證:a1a2a3...an?2n?1.

63

解:(?)因?yàn)镕?x??F?1?x??3x?23?1?x??2??3 2x?12?1?x??1?1??2??2008??F?...?F所以設(shè)S=F??????;..........(1) 200920092009??????

?2008??2007??1??F?...?FS=F??????……….(2)

?2009??2009??2009?(1)+(2)得:

??1???2008??2008????2??2007???1??2S??F??F?F?F?...?F?F?????????????????2009????2009??2009???2009????2009???2009?

=3?2008?6024, 所以S=3012

(??)由an?1?F?an?兩邊同減去1,得

an?1?1?3an?2a?1?1?n 2an?12an?1所以

1an?1?1?2an?12?an?1??11, ??2?an?1an?1an?1所以

?1?11是以2為公差以?2,??1為首項(xiàng)的等差數(shù)列, ?a?1an?1?1an?1a1?1?n?1?所以

112n?2??n?1??2?2n?1?an?1? ?an?12n?12n?12?????因?yàn)?2n?

所以

??2n??1??2n?1??2n?1?

22n2n?123452n2n?1? ??,?,...?2n?12n12342n?12n所以a1a2a3...an??a1a2a3...an?2?22442n2n???......? 11332n?12n?1>23452n2n?1???......??2n?1 12342n?12n例48 過點(diǎn)P(1,0)作曲線C:y?xk(x?(0,??),k?N?,k?1)的切線,切點(diǎn)為M1,設(shè)M1在x軸上的投影是點(diǎn)P1。又過點(diǎn)P1作曲線C的切線,切點(diǎn)為M2,設(shè)M2在x軸上的投影是點(diǎn)P2,…。依此下去,得到一系列點(diǎn)M1,M2…,Mn,…,設(shè)它

們的橫坐標(biāo)a1,a2,…,an,…,構(gòu)成數(shù)列為?an?。 (1)求證數(shù)列?an?是等比數(shù)列,并求其通項(xiàng)公式; (2)求證:an?1?n; k?1n,求數(shù)列?bn?的前n項(xiàng)和Sn。 an (3)當(dāng)k?2時(shí),令bn?k)的切線方程是 解:(1)對(duì)y?xk求導(dǎo)數(shù),得y?kxk?1,切點(diǎn)是Mn(an,ankk?1y?an?kan(x?an)

當(dāng)n=1時(shí),切線過點(diǎn)P(1,0),即0?a1k?ka1k?1(1?a),得a1?k; k?1ank?. an?1k?1kk?1?kan(an?1?an),得當(dāng)n>1時(shí),切線過點(diǎn)pn?1(an?1,0),即0?ankk,公比為的等比數(shù)列, k?1k?1kn所以數(shù)列?an?的通項(xiàng)公式為an?(),n?N?

k?1所以數(shù)列?an?是首項(xiàng)a1? (2)應(yīng)用二項(xiàng)公式定理,得

kn1n1121n012n)?(1?)?Cn?Cn?Cn()???Cn()k?1k?1k?1k?1k?1

n?1?.?????(8分)k?1an?((3)當(dāng)

n123n??, .數(shù)列b的前項(xiàng)n項(xiàng)和S??????nnn23n2222211123n同乘以,得Sn?2?3?4???n?1.

222222k?2時(shí),an?2n,bn?兩式相減,得

11(1?n)11121n2?n?1?1?n Sn??2?3???n?n?1?212222222n?12n2n?11?2n?2所以Sn?2?n

2例49 設(shè)數(shù)列?an?的前n項(xiàng)和為Sn,對(duì)任意的正整數(shù)n,都有an?5Sn?1成立,

65

記bn?4?an(n?N*)。 1?an(I)求數(shù)列?bn?的通項(xiàng)公式;

(II)記cn?b2n?b2n?1(n?N*),設(shè)數(shù)列?cn?的前n項(xiàng)和為Tn,求證:對(duì)任意正整數(shù)n都有Tn?3; 2(III)設(shè)數(shù)列?bn?的前n項(xiàng)和為Rn。已知正實(shí)數(shù)?滿足:對(duì)任意正整數(shù)n,Rn??n恒成立,求?的最小值。

1解:(Ⅰ)當(dāng)n?1時(shí),a1?5a1?1,?a1??

4又

an?5an?1,an?1?5an?1?1

1?an?1?an?5an?1,即an?1??an

411?數(shù)列?an?成等比數(shù)列,其首項(xiàng)a1??,公比是q??

441?an?(?)n

414?(?)n4 ?bn?11?(?)n4(Ⅱ)由(Ⅰ)知bn?4?5 n(?4)?15525?16n?cn?b2n?b2n?1?2n?2n?1? nn4?14?1(16?1)(16?4)25?16n25?16n25?? = n2

(16)?3?16n?4)(16n)216n134,?c1? 333當(dāng)n?1時(shí),T1?

2411當(dāng)n?2時(shí),Tn??25?(2?3?31616 又b1?3,b2??1) 16n66

11n?1[1?()]2416??25?16131?16

124693??25?16??......................7分134821?16(Ⅲ)由(Ⅰ)知bn?4?5

(?4)n?1一方面,已知Rn??n恒成立,取n為大于1的奇數(shù)時(shí),設(shè)n?2k?1(k?N*) 則Rn?b1?b2??b2k?1

111???1234?14?14?1111 ?4n?5?[?1?(2?3)?4?14?14?1 ?4n?5?(? >4n?1

?)

4?111?(2k?2k?1)] 4?14?12k?11??n?Rn?4n?1,即(??4)n??1對(duì)一切大于1的奇數(shù)n恒成立

???4,否則,(??4)n??1只對(duì)滿足n?1的正奇數(shù)n成立,矛盾。 4??另一方面,當(dāng)??4時(shí),對(duì)一切的正整數(shù)n都有Rn?4n 事實(shí)上,對(duì)任意的正整數(shù)k,有

b2n?1?b2n?8?5(?4)2k?1?1(?4)2k?1

?5 ?8?520? kk(16)?1(16)?415?16k?40?8 ?8?kk(16?1)(16?4)?當(dāng)n為偶數(shù)時(shí),設(shè)n?2m(m?N*) 則Rn?(b1?b2)?(b3?b4)? <8m?4n

67

?(b2m?1?b2m)

當(dāng)n為奇數(shù)時(shí),設(shè)n?2m?1(m?N*) 則Rn?(b1?b2)?(b3?b4)?<8(m?1)?4?8m?4?4n

?(b2m?3?b2m?2)?b2m?1

?對(duì)一切的正整數(shù)n,都有Rn?4n 綜上所述,正實(shí)數(shù)?的最小值為4

例50 已知數(shù)集序列{1}, {3, 5}, {7, 9,11}, {13, 15, 17, 19},……,其中第n個(gè)集合有n個(gè)元素,每一個(gè)集合都由連續(xù)正奇數(shù)組成,并且每一個(gè)集合中的最大數(shù)與后一個(gè)集合最小數(shù)是連續(xù)奇數(shù),

(Ⅰ) 求第n個(gè)集合中最小數(shù)an的表達(dá)式; (Ⅱ)求第n個(gè)集合中各數(shù)之和Sn的表達(dá)式;

?1?1? (Ⅲ)令f(n)=??(n?N*) ,求證:2≤f(n)?3 3?Sn???解: (Ⅰ) 設(shè)第n個(gè)集合中最小數(shù)an , 則第n?1個(gè)集合中最小數(shù)an?1 ,

n 又第n?1個(gè)集合有n?1個(gè)數(shù), 且依次增加2 , ∴an?1?2(n?1)?an ,即 an?an?1?2(n?1)(n?2) , ∴an?1?an?2?2(n?2),an?2?an?3?2(n?3),???,a2?a1?2 ,

(n?1)(1?n?1) 相加得an?a1?2??n2?n ,即得an?n2?n?a1 .

2又a1?1 , ∴an?n2?n?1 . (Ⅱ)由(Ⅰ)得an?n2?n?1 ,

n(n?1)從而得Sn?n(n2?n?1)??2?n3 .

2n??11??* (Ⅲ)由(Ⅱ)得Sn?n3 , ∴f(n)??1????1?? (n?N),

?3S??n?n??n?1?010111212n1n ∵?1???Cn()?Cn()?Cn()?????Cn()

nnnn?n?010111()?Cn()?2 , ≥Cnnnn(n?1)(n?2)???(n?k?1)11k1k()??? 又當(dāng)n≥2 時(shí), Cnknnk!k!111 ≤?? .

(k?1)kk?1k?1?010111212n1n ∴?1???Cn()?Cn()?Cn()?????Cn()

nnnn?n?68

nn11111 ≤1?1?(1?)?(?)?????(?)

223n?1n1 ?3??3 .

n∴ 2≤f(n)?3 .

1例51 首項(xiàng)為正數(shù)的數(shù)列?an?滿足an?1?(an2?3),n?N?.

4(I)證明:若a1為奇數(shù),則對(duì)一切n?2,an都是奇數(shù); (II)若對(duì)一切n?N?都有an?1?an,求a1的取值范圍.

解:(I)已知a1是奇數(shù),假設(shè)ak?2m?1是奇數(shù),其中m為正整數(shù),

ak2?3?m(m?1)?1是奇數(shù)。 則由遞推關(guān)系得ak?1?4根據(jù)數(shù)學(xué)歸納法,對(duì)任何n?N?,an都是奇數(shù)。

1an?1?an當(dāng)且僅當(dāng)an?1或an?3。(II)(方法一)由an?1?an?(an?1)(an?3)知,

432?31?3?3. ?1;若ak?3,則ak?1?另一方面,若0?ak?1,則0?ak?1?44根據(jù)數(shù)學(xué)歸納法,0?a1?1,?0?an?1,?n?N?;a1?3?an?3,?n?N?. 綜合所述,對(duì)一切n?N?都有an?1?an的充要條件是0?a1?1或a1?3。

a12?3?a1,得a12?4a1?3?0,于是0?a1?1或a1?3。 (方法二)由a2?4an2?3an?12?3(an?an?1)(an?an?1)an?1?an???,

444an2?3,所以所有的an均大于0,因此an?1?an與an?an?1同號(hào)。 因?yàn)閍1?0,an?1?4根據(jù)數(shù)學(xué)歸納法,?n?N?,an?1?an與a2?a1同號(hào)。 因此,對(duì)一切n?N?都有an?1?an的充要條件是0?a1?1或a1?3。

例52 各項(xiàng)均為正數(shù)的數(shù)列{an},a1?a,a2?b,且對(duì)滿足m?n?p?q的正整數(shù)

69

m,n,p,q都有

ap?aqam?an?.

(1?am)(1?an)(1?ap)(1?aq)14(1)當(dāng)a?,b?時(shí),求通項(xiàng)an;

25(2)證明:對(duì)任意a,存在與a有關(guān)的常數(shù)?,使得對(duì)于每個(gè)正整數(shù)n,都有

1??an??.

解:(1)由

ap?aqam?an得 ?(1?am)(1?an)(1?ap)(1?aq)a1?ana2?an?114?.將a1?,a2?代入化簡(jiǎn)得

(1?a1)(1?an)(1?a2)(1?an?1)25 an?2an?1?1.

an?1?2所以

1?an11?an?1??, 1?an31?an?11?an故數(shù)列{}為等比數(shù)列,從而

1?an3n?11?an1?n,即an?n.

3?11?an33n?1可驗(yàn)證,an?n滿足題設(shè)條件.

3?1(2) 由題設(shè)

am?an的值僅與m?n有關(guān),記為bm?n,則

(1?am)(1?an)bn?1?a1?ana?an?.

(1?a1)(1?an)(1?a)(1?an)考察函數(shù) f(x)?a?x(x?0),則在定義域上有

(1?a)(1?x)70

?1a?1?1?a,??1f(x)?g(a)??,a?1

?2?a?1?a,0?a?1?故對(duì)n?N*, bn?1?g(a)恒成立. 又 b2n?2an?g(a),

(1?an)21注意到0?g(a)?,解上式得

21?g(a)?1?2g(a)1?g(a)?1?2g(a)g(a)??an?,

g(a)g(a)1?g(a)?1?2g(a)取??1?g(a)?1?2g(a)1,即有 ?an??..

?g(a),

例53 設(shè) f(x)?x2?a. 記f1(x)?f(x),fn(x)?f(fn?1(x)),n?2,3,1??M?a?R對(duì)所有正整數(shù) n, fn(0)?2. 證明:M???2, ?.

4????【證明】(1)如果a??2,則f1(0)?|a|?2,a?M。

1,由題意 f1(0)?a,fn(0)?(fn?1(0))2?a,n?2,3,. 則 411① 當(dāng) 0?a?時(shí),fn(0)?(?n?1).

421 事實(shí)上,當(dāng)n?1時(shí),f1(0)?a?, 設(shè)n?k?1時(shí)成立(k?2為某整數(shù)),則

2對(duì)n?k,

(2)如果?2?a??1?11fk(0)?fk?1(0)?a?????.

?2?4222② 當(dāng) ?2?a?0時(shí),fn(0)?a(?n?1).

事實(shí)上,當(dāng)n?1時(shí),f1(0)?a, 設(shè)n?k?1時(shí)成立(k?2為某整數(shù)),則對(duì)n?k,有

?|a|?a?f(0)??fkk?1(0)??a?a2?a.注意到 當(dāng)?2?a?0時(shí),總有a2??2a,

271

?1?即 a2?a??a?|a|. 從而有fk(0)?|a|.由歸納法,推出 ??2,??M。

4??(3)當(dāng)a?11時(shí),記an?fn(0),則對(duì)于任意n?1,an?a?且 442an?1?fn?1(0)?f(fn(0))?f(an)?an?a。

1112對(duì)于任意n?1,an?1?an?an, 則?an?a?(an?)2?a??a?2441an?1?an?a?。

42?a1n? 所以,。當(dāng)時(shí),an?1?a?an?1?a1?n(a?)14a?41an?1?n(a?)?a?2?a?a?2,即fn?1(0)?2。因此a?M。

41??綜合(1)(2)(3),得M???2, ?。

4??例 已知數(shù)列{an}滿足a1?1,an?1?an?2n(n?1,2,3?),{bn}滿足b1?1,

bn?12bn1n1?bn?(n?1,2,3?),證明: ???1。

n2k?1ak?1bk?kak?1?bk?k證明:記 In??k?1n1ak?1bk?kak?1?bk?k1?,則 I1?n1?I2???In。 2而In??k?1n(ak?1?1)(bk?k)?ak?1n1。

k?1?1k?1bk?k??1因?yàn)閍1?1,an?1?an?2n,所以ak?1?1?k(k?1)。 從而有 ?k?1n1ak?1?1??11?1??1。 (1)

n?1k?1k(k?1)n又因?yàn)閎k?1bk2bk(bk?k)1k11????bk??,所以, bk?1bk(bk?k)bkbk?kkkn1111111????1。 (2) 即。從而有 ???b1bn?1b1bk?kbkbk?1k?1bk?k1?In?1。 2左邊不等式的等號(hào)成立當(dāng)且僅當(dāng) n=1時(shí)成立。

由(1)和(2)即得 In?1。 綜合得到

72

例55 設(shè)數(shù)列{an}(n?0)滿足a1?2,am?n?am?n?m?n?m,n?N,m?n.

1(a2m?a2n),其中2(1)證明:對(duì)一切n?N,有an?2?2an?1?an?2; (2)證明:

111?????1. a1a2a2009證明 (1)在已知關(guān)系式am?n?am?n?m?n?1(a2m?a2n)中,令m?n,2可得a0?0;令n?0,可得a2m?4am?2m ①

令m?n?2,可得a2n?2?a2?2?1(a2n?4?a2n) ② 2由①得a2n?2?4an?1?2(n?1),a2?4a1?2?6,a2n?4?4an?2?2(n?2),

a2n?4an?2n,

代入②,化簡(jiǎn)得an?2?2an?1?an?2.

(2)由an?2?2an?1?an?2,得(an?2?an?1)?(an?1?an)?2,故數(shù)列

{an?1?an}是首項(xiàng)為a1?a0?2,公差為2的等差數(shù)列,因此an?1?an?2n?2.

于是an??(ak?ak?1)?a0??(2k)?0?n(n?1).

k?1k?1nn因?yàn)?p>1111???(n?1),所以 ann(n?1)nn?1111111111?????(1?)?(?)???(?)?1??1. a1a2a2009223200920102010

六、數(shù)列與概率統(tǒng)計(jì)交匯的綜合題

例56 為了研究某高校大學(xué)新生學(xué)生的視力情況,隨機(jī)地抽查了該校100名進(jìn)校

學(xué)生的視情況,得到頻率分布直方圖,如圖4,.已知前4組的頻數(shù)從左到右依次是等比數(shù)列?an?的前四項(xiàng),后6組的頻數(shù)從左到右依次是等差數(shù)列?bn?73

的前六項(xiàng).

(Ⅰ)求等比數(shù)列?an?的通項(xiàng)公式; (Ⅱ)求等差數(shù)列?bn?的通項(xiàng)公式;

(Ⅲ)若規(guī)定視力低于5.0的學(xué)生屬于近視學(xué)生,試估計(jì)該校新生的近視率的大小.

解:(I)由題意知:a1?0.1?0.1?100?1,a2?0.3?0.1?100?3.

∵數(shù)列?an?是等比數(shù)列,∴公比q?∴an?a1qn?1?3n?1 .

(II) ∵a1?a2?a3=13,∴b1?b2?b1?b2??b6?100?(a1?a2?a3)?87, a2?3, a1∵數(shù)列?bn?是等差數(shù)列,∴設(shè)數(shù)列?bn?公差為d,則得,

?b6?6b1?15d,∴6b1?15d=87,

b1?a4?27, d??5,bn?32?5n

a1?a2?a3?b1?b2?b3?b4?0.91,

100b?b(或=1?56?0.91)

100答:估計(jì)該校新生近視率為91%.

(III) =

例57從原點(diǎn)出發(fā)的某質(zhì)點(diǎn)M, 按向量a=(0,1)移動(dòng)的概率為,按向量b=(0,2)

移動(dòng)的概率為,設(shè)可達(dá)到點(diǎn)(0,n)的概率為Pn, 求: (1).求P1和P2的值.

(2).求證:Pn+2=Pn+Pn+1. (3).求Pn的表達(dá)式.

解: (1). P1=,P2?()2??.

74

2313132323231379 (2).證明:到達(dá)點(diǎn)(0,n+2)有兩種情況:從點(diǎn)(0,n)按向量b?(0,2)移動(dòng);從

點(diǎn)(0,n+1) 按向量a=(0,1)移動(dòng),概率分別為Pn?與Pn?1?,所以

12Pn?2?Pn?Pn?1.

331323 (3).由(2)得Pn+2-Pn+1=?(Pn?1?Pn),故數(shù)列{Pn+1-Pn}是以P2-P1=為首項(xiàng),

1111?為公比的等比數(shù)列,故Pn+1-Pn=?(?)n?1?(?)n?1, 393311 于是Pn-P1=(Pn?Pn?1)?????(P2?P1)??[1?(?)n?1]

123311 ?Pn???(?)n.

4431319

七、分段數(shù)列綜合題

例58 數(shù)列{an}的首項(xiàng)a1=1,且對(duì)任意n∈N,an與an+1恰為方程x2-bnx+2n=0的兩個(gè)根.

(Ⅰ)求數(shù)列{an}和數(shù)列{bn}的通項(xiàng)公式; (Ⅱ)求數(shù)列{bn}的前n項(xiàng)和Sn.

解:(Ⅰ)由題意n∈N*,an·an+1=2n an+1·an+2an+22n+1∴==n=2'(1分) an·an+1an2

又∵a1·a2=2'a1=1'a2=2

∴a1,a3,…,a2n-1是前項(xiàng)為a1=1公比為2的等比數(shù)列, a2,a4,…,a2n是前項(xiàng)為a2=2公比為2的等比數(shù)列 ∴a2n-1=2n-1' a2n=2n' n∈N*

n?1??2即an=?2,n為奇數(shù)

n??2,n為偶數(shù)又∵bn=an+an+1

n-1n+1n-1

當(dāng)n為奇數(shù)時(shí),bn=2+2=3·2 222

當(dāng)n為偶數(shù)時(shí),bn=2+2=2·2 222

n?1??3?22,n為奇數(shù)∴bn=?1?n

2??2,n為偶數(shù)(Ⅱ)Sn=b1+b2+b3+…+bn 當(dāng)n為偶數(shù)時(shí),

Sn=(b1+b3+…+bn-1)+(b2+b4+…+bn) 3-3·2=

nnnn2+

4-4·21-2

n2

=7·2-7 (

2

75

n1-2

當(dāng)n為奇數(shù)時(shí),

Sn=b1+b2+…+bn-1+bn

n-1

=Sn-1+bn=10·2-7 (

2

n?1??10?22?7,n為奇數(shù)Sn=? n2??7?2?7,n為偶數(shù)

例59 數(shù)列{an}的通項(xiàng)an?n2(cos2(1) 求Sn;

S3n,求數(shù)列{bn}的前n項(xiàng)和Tn. nn?4n?n?2n?解: (1) 由于cos2,故 ?sin2?cos333n?n??sin2),其前n項(xiàng)和為Sn. 33(2) bn?S3k?(a1?a2?a3)?(a4?a5?a6)?12?2242?522?(??3)?(??62)?22?(a3k?2?a3k?1?a3k) (3k?2)2?(3k?1)22?(??(3k)))2?18k?5k(9k?4), ?22k(4?9k)S3k?1?S3k?a3k?,

2?k(4?9k)(3k?1)213k?21?S3k?1?a3k?1????k???,

222361331??22S3k?2n1???,n?3k?2?36??(n?1)(1?3n)故 Sn??,n?3k?1 (k?N*)

6??n(3n?4),n?3k?6?(2) bn?S3n9n?4?, n?4n2?4n113229n?4Tn?[?2??],

2444n1229n?44Tn?[13???n?1],

244兩式相減得

76

99?n1999n?419n?419n3Tn?[13???n?1?n]?[13?44?n]?8?2n?3?2n?1,

1244424221?4813n故 Tn???.2n?32n?133?22

n?n?例60 數(shù)列?an?滿足a1?1,a2?2,an?2?(1?cos2)an?sin2,n?1,2,3,.

22 (Ⅰ)求a3,a4,并求數(shù)列?an?的通項(xiàng)公式; (Ⅱ)設(shè)bn?a2n?1,Sn?b1?b2?a2n1?bn.證明:當(dāng)n?6時(shí),Sn?2?.n

.解:(Ⅰ)因?yàn)閍1?1,a2?2,所以a3?(1?cos2?2)a1?sin2?2?a1?1?2,

a4?(1?cos2?)a2?sin2??2a2?4. 一般地,當(dāng)n?2k?1(k?N*)時(shí),a2k?1?[1?cos2=a2k?1?1,即a2k?1?a2k?1?1.

所以數(shù)列?a2k?1?是首項(xiàng)為1、公差為1的等差數(shù)列,因此a2k?1?k. 當(dāng)n?2k(k?N*)時(shí),a2k?2?(1?cos2(2k?1)?2k?1]a2k?1?sin2? 222k?2k?)a2k?sin2?2a2k. 22所以數(shù)列?a2k?是首項(xiàng)為2、公比為2的等比數(shù)列,因此a2k?2k.

?n?1*,n?2k?1(k?N),?2故數(shù)列?an?的通項(xiàng)公式為an??

n?2*?2,n?2k(k?N).(Ⅱ)由(Ⅰ)知,bn?a2n?1n123?2,Sn??2?3?222a2n2?n, ① n21123nSn?2?2?4??n?1 ② 2222211111n ①-②得,Sn??2?3??n?n?1.

22222211[1?()2]2?n?1?1?n. ?2n?1nn?112221?21nn?2 所以Sn?2?n?1?n?2?n.

22277

要證明當(dāng)n?6時(shí),Sn?2? 證法一

1n(n?2)?1成立. 成立,只需證明當(dāng)n?6時(shí),

n2n6?(6?2)483???1成立. 624k(k?2)?1. (2)假設(shè)當(dāng)n?k(k?6)時(shí)不等式成立,即

2k (1)當(dāng)n = 6時(shí),

則當(dāng)n=k+1時(shí),

(k?1)(k?3)k(k?2)(k?1)(k?3)(k?1)(k?3)????1. k?1k222k(k?2)(k?2)2kn(n?1)1?1S?2?. .即當(dāng)n≥6時(shí),n22n 由(1)、(2)所述,當(dāng)n≥6時(shí),

證法二

(n?1)(n?3)n(n?2)3?n2n(n?2)??n?1?0. (n?6),則cn?1?cn? 令cn?2n?122222 所以當(dāng)n?6時(shí),cn?1?cn.因此當(dāng)n?6時(shí),cn?c6?6?83??1. 4n(n?2)1?1.S?2?.于是當(dāng)n?6時(shí),綜上所述,當(dāng)時(shí),n?6n22n

例61 設(shè)m個(gè)不全相等的正數(shù)a1,a2,(Ⅰ)若m?2009,且a1,a2,a1,a2009,a2008,,am(m?7)依次圍成一個(gè)圓圈.

,a1005是公差為d的等差數(shù)列,而

,am的前n項(xiàng)和

,a1006是公比為q?d的等比數(shù)列;數(shù)列a1,a2,Sn(n?m)滿足:S3?15,S2009?S2007?12a1,求通項(xiàng)an(n?m);

解:因a1,a2009,a2008,???,a1006是公比為d的等比數(shù)列,從而a2000?a1d,a2008?a1d2 由

S2009?S2008?12a1得a2008?a2009?12a1,故

解得d?3或d??4(舍去)。因此d?3 又 S3?3a1?3d?15。解得a1?2 從而當(dāng)n?1005時(shí),

an?a1?(n?1)d?2?3(n?1)?3n?1

當(dāng)1006?n?2009時(shí),由a1,a2009,a2008,???,a1006是公比為d的等比數(shù)列得

78

an?a1d2009?(n?1)?a1d2010?n(1006?n?2009)

?3n?1,n?1005因此an??2009?n

,1006?n?2009?2?3八、信息遷移題 例62 設(shè)同時(shí)滿足條件:①

bn?bn?2②bn≤M(n?N*,M是與n無≤bn?1(n?N*);

2關(guān)的常數(shù))的無窮數(shù)列{bn}叫“特界” 數(shù)列.

(Ⅰ)若數(shù)列{an}為等差數(shù)列,Sn是其前n項(xiàng)和,a3?4,S3?18,求Sn; (Ⅱ)判斷(Ⅰ)中的數(shù)列{Sn}是否為“特界” 數(shù)列,并說明理由. .解:(Ⅰ)設(shè)等差數(shù)列{an}的公差為d,

則a1?2d?4,3a1?3d?18,解得a1?8,d??2,Sn?na1?(Ⅱ)由得

Sn?Sn?22n(n?1)d??n2?9n 2(S?Sn?1)?(Sn?1?Sn)an?2?an?1d?Sn?1?n?2????1?0

222Sn?Sn?2?Sn?1,故數(shù)列{Sn}適合條件① 2981而Sn??n2?9n??(n?)2?(n?N*),則當(dāng)n?4或5時(shí),Sn有最大值20

24即Sn≤20,故數(shù)列{Sn}適合條件②. 綜上,故數(shù)列{Sn}是“特界”數(shù)列。

79

因篇幅問題不能全部顯示,請(qǐng)點(diǎn)此查看更多更全內(nèi)容

Copyright ? 2019- 91gzw.com 版權(quán)所有 湘ICP備2023023988號(hào)-2

違法及侵權(quán)請(qǐng)聯(lián)系:TEL:199 1889 7713 E-MAIL:2724546146@qq.com

本站由北京市萬(wàn)商天勤律師事務(wù)所王興未律師提供法律服務(wù)